黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异

陈坚, 吴柳格, 张鑫, 邓艾兴, 宋振伟, 张卫建, 郑成岩

陈坚, 吴柳格, 张鑫, 邓艾兴, 宋振伟, 张卫建, 郑成岩. 黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异[J]. 中国生态农业学报 (中英文), 2025, 33(3): 508−519. DOI: 10.12357/cjea.20240193
引用本文: 陈坚, 吴柳格, 张鑫, 邓艾兴, 宋振伟, 张卫建, 郑成岩. 黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异[J]. 中国生态农业学报 (中英文), 2025, 33(3): 508−519. DOI: 10.12357/cjea.20240193
CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 508−519. DOI: 10.12357/cjea.20240193
Citation: CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 508−519. DOI: 10.12357/cjea.20240193
陈坚, 吴柳格, 张鑫, 邓艾兴, 宋振伟, 张卫建, 郑成岩. 黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异[J]. 中国生态农业学报 (中英文), 2025, 33(3): 508−519. CSTR: 32371.14.cjea.20240193
引用本文: 陈坚, 吴柳格, 张鑫, 邓艾兴, 宋振伟, 张卫建, 郑成岩. 黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异[J]. 中国生态农业学报 (中英文), 2025, 33(3): 508−519. CSTR: 32371.14.cjea.20240193
CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 508−519. CSTR: 32371.14.cjea.20240193
Citation: CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 508−519. CSTR: 32371.14.cjea.20240193

黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异

基金项目: 国家自然科学基金项目(32272218)、中国农业科学院科技创新工程项目(CAAS-ZDRW202407, 01-ICS-20)和国家现代农业产业技术体系建设专项项目(CARS-22)资助
详细信息
    作者简介:

    陈坚, 主要研究方向为作物耕作与农田生态。E-mail: 18811739285@163.com

    通讯作者:

    郑成岩, 主要研究方向为作物耕作与农田生态。E-mail: zhengchengyan@caas.cn

  • 中图分类号: S344

Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region

Funds: The study was supported by the National Natural Science Foundation of China (32272218), the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202407, 01-ICS-20) and the Modern Agro-industry Technology Research System of China (CARS-22).
More Information
  • 摘要:

    气候变化导致极端天气频发, 严重影响作物可持续生产。解析不同种植模式下作物产量和农田温室气体排放特征, 可为黄淮海地区构建作物丰产和低碳排放的气候韧性种植模式提供理论依据。本研究于2015—2020年在中国农业科学院作物科学研究所新乡试验基地开展, 设置5种不同种植模式, 分别为单季冬小麦(W)、单季夏大豆(S)、单季夏玉米(M)、冬小麦-夏大豆一年两熟(W-S)和冬小麦-夏玉米一年两熟(W-M)。结果表明: W-M模式周年玉米当量产量、能量产量和经济效益均显著高于W、S、M和W-S模式; W-S模式的N2O累积排放量、直接温室气体排放量和单位播种面积碳足迹分别比W-M模式降低10.7%、11.1%和4.7%; 3种作物的氮素积累量表现为大豆>小麦>玉米, 玉米的氮肥偏生产力最高。综上, 冬小麦-夏玉米一年两熟模式可获得最高的作物产量、能量产量和经济效益, 在以产量和经济效益为目标的作物生产中, 冬小麦-夏玉米模式是较好的种植模式, 但其温室气体排放也最高, 后续应深入研究该种植模式的碳减排技术, 以达到丰产和低碳排放协同。

    Abstract:

    Climate change has increasingly triggered extreme weather events, leading to significant adverse effects on crop production and posing challenges to the sustainability of agricultural systems. This study investigated the effects of different cropping systems on crop yields and greenhouse gases (GHG) emissions in the Huang-Huai-Hai Region to provide a scientific basis for constructing climate-resilient, high-yield, and low-carbon cropping systems in this region. The field experiments were conducted between 2015 and 2020 at the Xinxiang Experimental Base of the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Five distinct cropping systems were established: single-cropping system of winter wheat (W), single-cropping system of summer maize (M), single-cropping system of summer soybean (S), double-cropping system of winter wheat-summer soybean (W-S), and double cropping system of winter wheat-summer maize (W-M). This study comprehensively analyzed crop yield under the five cropping systems over six years and calculated the output value and economic benefit associated with each system. Additionally, from 2017 to 2019, we monitored soil GHG emissions, measured crop nitrogen accumulation, and calculated the partial factor productivity of nitrogen. The carbon footprint of each cropping system was assessed. The results revealed that the W-M cropping system consistently outperformed the other systems regarding annual maize equivalent yield, energy output, and economic benefit. This system demonstrated superior productivity, making it a highly effective system for achieving high yield and maximizing economic return. However, the W-M cropping system also exhibited the highest GHG emissions, indicating a potential trade-off between yield and environmental sustainability. In contrast, the W-S cropping system reduced cumulative N2O emissions, direct GHG emissions, andcarbon footprint per unit sown area by 10.7%, 11.1%, and 4.7%, respectively, compared with the W-M cropping system. This reduction highlighted the GHG mitigation potential of the W-S cropping system with a relatively high yield. Moreover, the nitrogen accumulation of the three crops from high to low was soybean>wheat>maize. However, despite the lower nitrogen accumulation in maize, it exhibited the highest partial factor productivity of nitrogen. In conclusion, although the W-M cropping system emerged as the most effective system for maximizing crop yield and economic benefit, it also presents environmental challenges owing to its higher GHG emissions. Therefore, further research is essential to develop carbon emission-reduction techniques for the W-M cropping system, with the aim of balancing high yield and low carbon emissions. This study provides critical insights into the trade-offs and synergies between crop productivity and environmental sustainability under different cropping systems, offering valuable guidance for the development of climate-resilient agricultural practices in the Huang-Huai-Hai Region and similar agroecological regions.

  • 图  1   2015—2020年不同种植模式周年玉米当量产量和能量产量

    W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。不同小写字母表示同一年份不同种植模式在P<0.05水平差异显著。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize. Different lowercase letters mean significant differences among different cropping systems in the same year at P<0.05 level.

    Figure  1.   Maize equivalent yield and energy yield under different cropping systems from 2015 to 2020

    图  2   2015—2020年不同种植模式的年平均产值和经济效益

    W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。不同小写字母表示不同种植模式在P<0.05水平差异显著。图中的点为平均值。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize. Different lowercase letters mean significant differences among different cropping systems at P<0.05 level. Dot in the figure refers to average value.

    Figure  2.   Annual average output values and economic benefits of different cropping systems from 2015 to 2020

    图  3   2017—2019年不同种植模式温室气体排放通量变化

    W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。箭头表示施肥时间, 虚线表示两季作物生育期的间隔。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize. The arrow indicates the fertilization time, and the dashed line indicates the interval between two crop growth periods.

    Figure  3.   Variations of greenhouse gas emission fluxes under different cropping systems from 2017 to 2019

    表  1   农田生产投入成本

    Table  1   Input cost to farm production

    ¥·hm−2 
    生产投入 Production input W S M W-S W-M
    种子 Seed 774 420 1 080 1 194 1 854
    复合肥 Fertilizer 3 525 3 525 3 525 7 050 7 050
    灌溉 Irrigation 675 225 225 900 900
    机械 Machinery 1 950 1 005 1 500 2 955 3 450
    农药 Pesticide 675 450 750 1 125 1 425
    人工 Labor 2 100 1 950 2 400 4 050 4 500
    总投入 Total input 9 699 7 575 9 480 17 274 19 179
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize.
    下载: 导出CSV

    表  2   生产资料的温室气体排放系数

    Table  2   Greenhouse gas emission factor of input items

    投入项
    Input item
    温室气体排放系数
    (以CO2-eq计)
    Greenhouse gas emission factor
    (based on CO2-eq)
    数据来源
    Data source
    复合肥 Compound fertilizer 1.77 kg·kg−1 [22]
    农药 Pesticide 6.58 kg·kg−1 [14]
    灌溉电力 Electricity for irrigation 0.92 kg·kWh−1 [14]
    柴油 Diesel fuel 3.32 kg·kg−1 [14]
    小麦种子 Wheat seed 1.16 kg·kg−1 [14]
    玉米种子 Maize seed 1.22 kg·kg−1 [14]
    大豆种子 Soybean seed 0.25 kg·kg−1 [14]
    人工 Labor 0.86 kg·d−1 [14]
    下载: 导出CSV

    表  3   生产过程中不同种植模式间接温室气体排放量(以CO2-eq计)

    Table  3   Indirect greenhouse gas emissions under different cropping systems during the production process (based on CO2-eq)

    kg·hm−2 
    模式
    System
    投入 Input CEindirect
    复合肥
    Compound fertilizer
    农药
    Pesticide
    电力
    Electricity
    柴油
    Diesel fuel
    种子
    Seed
    人工
    Labor
    W 1 327.50 29.61 349.14 185.92 200.10 22.58 2 114.85
    S 1 327.50 19.74 116.38 99.60 15.00 20.96 1 599.18
    M 1 327.50 32.90 116.38 166.00 36.60 25.80 1 705.18
    W-S 2 655.00 49.35 465.52 285.52 215.10 43.54 3 714.03
    W-M 2 655.00 62.51 465.52 351.92 236.70 46.76 3 818.41
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟; CEindirect: 间接温室气体总排放量。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize; CEindirect: total indirect greenhouse gas emissions.
    下载: 导出CSV

    表  4   2017—2019年不同种植模式的作物氮素积累量

    Table  4   Nitrogen accumulation under different cropping systems from 2017 to 2019

    kg·hm−2 
    种植模式
    Cropping system
    2017—2018 2018—2019
    小麦 Wheat 玉米 Maize 大豆 Soybean 小麦 Wheat 玉米 Maize 大豆 Soybean
    W 254.68±27.07a 231.65±14.13a
    S 308.23±7.10b 329.40±22.07b
    M 190.20±23.56a 149.33±2.60a
    W-S 230.23±27.11a 358.94±22.10a 219.78±21.51a 441.90±33.13a
    W-M 222.58±35.58a 208.99±30.87a 207.52±3.34a 120.22±15.07b
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。同列不同小写字母表示同一作物不同种植模式在P<0.05水平差异显著。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize. Different lowercase letters in the same column mean significant differences among different cropping systems of the same crop at P<0.05 level.
    下载: 导出CSV

    表  5   2017—2019年不同种植模式下作物氮肥偏生产力

    Table  5   Partial factor productivities of nitrogen of different crops under different cropping systems from 2017 to 2019

    kg·kg−1 
    种植模式
    Cropping system
    2017—2018 2018—2019
    小麦 Wheat 玉米 Maize 大豆 Soybean 小麦 Wheat 玉米 Maize 大豆 Soybean
    W 73.95±3.98a 73.52±4.19a
    S 25.23±1.85a 28.30±2.60a
    M 82.14±0.36a 105.79±9.32a
    W-S 65.01±5.14b 22.95±1.80a 64.99±3.76b 25.11±3.27a
    W-M 75.38±2.93a 55.07±1.32b 63.12±4.73b 81.53±4.21b
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟。同列不同小写字母表示同一作物不同种植模式在P<0.05水平差异显著。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize. Different lowercase letters in the same column mean significant differences among different cropping systems of the same crop at P<0.05 level.
    下载: 导出CSV

    表  6   2017—2019年不同种植模式温室气体累积排放量

    Table  6   Cumulative greenhouse gas emissions under different cropping systems from 2017 to 2019

    kg·hm−2 
    种植模式
    Cropping system
    2017—2018 2018—2019
    $ {\mathrm{C{E}_{{N}_{2}O}}} $
    $ {\mathrm{C{E}_{{CH}_{4}} }}$
    CEdirect
    ${\mathrm{ C{E}_{{N}_{2}O}}} $
    $ {\mathrm{C{E}_{{CH}_{4}} }}$
    CEdirect
    W 2.90±0.05c −0.65±0.16c 849.05±20.35c 2.23±0.12d −0.15±0.05ab 660.90±33.01d
    S 2.93±0.17c −0.12±0.16a 870.61±50.97c 2.83±0.12c −0.08±0.03a 840.52±35.49c
    M 3.27±0.10b −0.08±0.12a 973.86±35.40b 2.96±0.10c −0.13±0.12ab 879.54±27.94c
    W-S 3.56±0.35b −0.39±0.10b 1 050.14±104.51b 3.42±0.10b −0.28±0.17b 1 010.88±32.94b
    W-M 4.11±0.09a −0.24±0.10ab 1 219.61±26.79a 3.71±0.05a −0.30±0.05b 1 099.09±14.69a
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟; $ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_{2}\mathrm{O}} $ : 直接排放的N2O; $ \mathrm{C}{\mathrm{E}}_{{\mathrm{C}\mathrm{H}}_{4}} $ : 直接排放的CH4; CEdirect:直接排放的温室气体。同列不同小写字母表示同一指标不同种植模式在P<0.05水平差异显著。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize; $ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_{2}\mathrm{O}} $ : direct emissions of N2O; $ \mathrm{C}{\mathrm{E}}_{{\mathrm{C}\mathrm{H}}_{4}} $ : direct emissions of CH4; CEdirect: direct greenhouse gas emissions. Different lowercase letters in the same column mean significant differences among different cropping systems of the same indicator at P<0.05 level.
    下载: 导出CSV

    表  7   2017—2019年不同种植模式的平均碳足迹

    Table  7   Average carbon footprints of different cropping systems from 2017 to 2019

    种植模式
    Cropping system
    CFA
    /(kg·hm−2)
    CFMEEY
    /(kg·kg−1)
    CFEY
    /(kg·MJ−1)
    W 2 869.82±13.79c 0.28±0.00c 11.76±0.28b
    S 2 454.75±17.73e 0.28±0.00bc 16.02±0.24a
    M 2 631.88±6.66d 0.32±0.01a 11.33±0.47b
    W-S 4 744.53±38.69b 0.29±0.00b 11.80±0.12b
    W-M 4 977.76±6.09a 0.24±0.00d 9.89±0.43c
      W: 单季冬小麦; S: 单季夏大豆; M: 单季夏玉米; W-S: 冬小麦-夏大豆一年两熟; W-M: 冬小麦-夏玉米一年两熟; CFA: 单位播种面积碳足迹; CFMEEY: 单位玉米当量产量碳足迹; CFEY: 单位能量产量碳足迹。同列不同小写字母表示相同指标不同种植模式在P<0.05水平差异显著。W: single-cropping system of winter wheat; S: single-cropping system of summer soybean; M: single-cropping system of summer maize; W-S: double-cropping system of winter wheat-summer soybean; W-M: double-cropping system of winter wheat-summer maize; CFA: carbon footprint per unit of sown area; CFMEEY: carbon footprint per unit maize equivalent yield; CFEY: carbon footprint per unit energy yield. Different lowercase letters in the same column mean significant differences among different cropping systems of the same indicator at P<0.05 level.
    下载: 导出CSV
  • [1] 周宝元, 葛均筑, 侯海鹏, 等. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937−949 doi: 10.3724/SP.J.1006.2020.93049

    ZHOU B Y, GE J Z, HOU H P, et al. Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers Plain[J]. Acta Agronomica Sinica, 2020, 46(6): 937−949 doi: 10.3724/SP.J.1006.2020.93049

    [2]

    LING M H, HAN H B, WEI X L, et al. Temporal and spatial distributions of precipitation on the Huang-Huai-Hai Plain during 1960–2019, China[J]. Journal of Water and Climate Change, 2021, 12(6): 2232−2244 doi: 10.2166/wcc.2021.313

    [3] 张凯, 周婕, 赵杰, 等. 华北平原主要种植模式农业地下水足迹研究−以河北省吴桥县为例[J]. 中国生态农业学报, 2017, 25(3): 328−336

    ZHANG K, ZHOU J, ZHAO J, et al. Agricultural groundwater footprint of the major cropping system in the North China Plain: A case study of Wuqiao County, Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 328−336

    [4]

    WANG G C, LUO Z K, WANG E L, et al. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain, China[J]. Agricultural and Forest Meteorology, 2018, 260/261: 80−94 doi: 10.1016/j.agrformet.2018.06.003

    [5] 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    [6]

    BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12052−12057

    [7]

    DAVIS K F, RULLI M C, SEVESO A, et al. Increased food production and reduced water use through optimized crop distribution[J]. Nature Geoscience, 2017, 10: 919−924 doi: 10.1038/s41561-017-0004-5

    [8]

    CUI J X, SUI P, WRIGHT D L, et al. Carbon emission of maize-based cropping systems in the North China Plain[J]. Journal of Cleaner Production, 2019, 213: 300−308 doi: 10.1016/j.jclepro.2018.12.174

    [9] 郑孟静, 张经廷, 崔永增, 等. 华北平原基于麦玉轮作的粮薯、粮豆轮作模式碳足迹评价[J]. 华北农学报, 2022, 37(S1): 81−89 doi: 10.7668/hbnxb.20193400

    ZHENG M J, ZHANG J T, CUI Y Z, et al. Carbon footprint evaluation of cereal-bean, cereal-potato rotation modes based on wheat-maize cropping system in North China Plain[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(S1): 81−89 doi: 10.7668/hbnxb.20193400

    [10] 谢鸿飞, 赵俊芳, 艾金龙, 等. 基于APSIM的华北平原不同种植模式下主要温室气体排放效应评估[J]. 中国农业气象, 2022, 43(12): 955−968 doi: 10.3969/j.issn.1000-6362.2022.12.001

    XIE H F, ZHAO J F, AI J L, et al. Assessment of main greenhouse gas emission effects under different cropping patterns in North China Plain based on APSIM crop model[J]. Chinese Journal of Agrometeorology, 2022, 43(12): 955−968 doi: 10.3969/j.issn.1000-6362.2022.12.001

    [11] 郑媛媛, 陈宗培, 王贵彦. 海河平原小麦-玉米不同种植制度节水特性分析[J]. 干旱地区农业研究, 2019, 37(5): 9−15 doi: 10.7606/j.issn.1000-7601.2019.05.02

    ZHENG Y Y, CHEN Z P, WANG G Y. Analysis on the water-saving characteristics of winter wheat and summer maize cropping system on Haihe Plain[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 9−15 doi: 10.7606/j.issn.1000-7601.2019.05.02

    [12]

    YANG Y H, TI J S, ZOU J, et al. Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields[J]. Agriculture, Ecosystems & Environment, 2023, 342: 108220

    [13]

    XIAO H, VAN ES H M, AMSILI J P, et al. Lowering soil greenhouse gas emissions without sacrificing yields by increasing crop rotation diversity in the North China Plain[J]. Field Crops Research, 2022, 276: 108366 doi: 10.1016/j.fcr.2021.108366

    [14]

    YANG L, NIE J W, ZHAO J, et al. Reduce carbon footprint without compromising system productivity: Optimizing crop rotation in the North China Plain[J]. Journal of Cleaner Production, 2023, 426: 139124 doi: 10.1016/j.jclepro.2023.139124

    [15]

    SUN T, FENG X M, LAL R, et al. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints[J]. Agriculture, Ecosystems & Environment, 2021, 321: 107614

    [16] 陈阜. 农业生态学[M]. 北京: 中国农业大学出版社, 2002: 316

    CHEN F. Agroecology[M]. Beijing: China Agricultural University Press, 2002: 316

    [17] 耿若鑫, 黑泽文, 油伦成, 等. 华北小麦施用脲铵氮肥实现轻简施肥的可行性及技术措施[J]. 植物营养与肥料学报, 2024, 30(6): 1103−1117 doi: 10.11674/zwyf.2023493

    GENG R X, HEI Z W, YOU L C, et al. Availability and technology of using urea-ammonium fertilizer to realize nitrogen reduction and simplified fertilization in wheat production of North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1103−1117 doi: 10.11674/zwyf.2023493

    [18] 张鑫, 郑成岩, 李升明, 等. 长期有机无机肥配施降低黄淮海区域小麦-大豆复种系统净温室效应[J]. 植物营养与肥料学报, 2020, 26(12): 2204−2215

    ZHANG X, ZHENG C Y, LI S M, et al. Long-term combined application of chemical and organic fertilizers decrease net greenhouse gas emission in wheat-soybean system in Huang-Huai-Hai region[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2204−2215

    [19] 林志敏, 李洲, 翁佩莹, 等. 再生稻田温室气体排放特征及碳足迹[J]. 应用生态学报, 2022, 33(5): 1340−1351

    LIN Z M, LI Z, WENG P Y, et al. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1340−1351

    [20] 刘志铭, 司雨, 姚凡云, 等. 提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施[J]. 中国生态农业学报(中英文), 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405

    LIU Z M, SI Y, YAO F Y, et al. Integrated management improves spring maize yield and resources use efficiency, and reduces the carbon footprint in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405

    [21] 吴健成, 刘卿, 汪翠存, 等. 秸秆还田与氮肥施用对稻田温室气体排放的影响[J]. 生态学报, 2024, 44(12): 5328−5339

    WU J C, LIU Q, WANG C C, et al. Effects of straw returning and nitrogen fertilizer application on greenhouse gas emissions in rice paddy fields and research on fertilizer recommendation[J]. Acta Ecologica Sinica, 2024, 44(12): 5328−5339

    [22]

    HUANG X M, CHEN C Q, QIAN H Y, et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978[J]. Journal of Cleaner Production, 2017, 142: 1629−1637 doi: 10.1016/j.jclepro.2016.11.131

    [23] 马小艳, 杨瑜, 黄冬琳, 等. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589−1603 doi: 10.3864/j.issn.0578-1752.2022.08.010

    MA X Y, YANG Y, HUANG D L, et al. Annual nutrients balance and economic return analysis of wheat with fertilizers reduction and different rotations[J]. Scientia Agricultura Sinica, 2022, 55(8): 1589−1603 doi: 10.3864/j.issn.0578-1752.2022.08.010

    [24]

    WANG X L, MA X X, YAN G, et al. Gene duplications facilitate C4-CAM compatibility in common purslane[J]. Plant Physiology, 2023, 193(4): 2622−2639 doi: 10.1093/plphys/kiad451

    [25] 王丹, 周宝元, 马玮, 等. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437−1450 doi: 10.3724/SP.J.1006.2022.13022

    WANG D, ZHOU B Y, MA W, et al. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River[J]. Acta Agronomica Sinica, 2022, 48(6): 1437−1450 doi: 10.3724/SP.J.1006.2022.13022

    [26] 周宝元, 陈传永, 孙雪芳, 等. 冬小麦-夏玉米双机收籽粒模式周年资源利用效率及经济效益[J]. 中国生态农业学报(中英文), 2022, 30(12): 1959−1972 doi: 10.12357/cjea.20220279

    ZHOU B Y, CHEN C Y, SUN X F, et al. Resource use efficiencies and economic benefits of winter wheat-summer maize cropping system with double mechanical grain harvest[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1959−1972 doi: 10.12357/cjea.20220279

    [27]

    LASISI A, LIU K. A global meta-analysis of pulse crop effect on yield, resource use, and soil organic carbon in cereal- and oilseed-based cropping systems[J]. Field Crops Research, 2023, 294: 108857 doi: 10.1016/j.fcr.2023.108857

    [28]

    YANG H, ZHANG W P, XU H S, et al. Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems[J]. Field Crops Research, 2023, 302: 109093 doi: 10.1016/j.fcr.2023.109093

    [29] 魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1384−1394 doi: 10.11674/zwyf.19511

    WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384−1394 doi: 10.11674/zwyf.19511

    [30] 李晓立, 何堂庆, 张晨曦, 等. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948−961 doi: 10.3864/j.issn.0578-1752.2022.05.009

    LI X L, HE T Q, ZHANG C X, et al. Effect of organic fertilizer replacing chemical fertilizers on greenhouse gas emission under the conditions of same nitrogen fertilizer input in maize farmland[J]. Scientia Agricultura Sinica, 2022, 55(5): 948−961 doi: 10.3864/j.issn.0578-1752.2022.05.009

    [31]

    WANG C, ZHAO J C, FENG Y P, et al. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems[J]. Agricultural Water Management, 2021, 248: 106762 doi: 10.1016/j.agwat.2021.106762

    [32]

    CHENG K, OGLE S M, PARTON W J, et al. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model[J]. Global Change Biology, 2014, 20(3): 948−962 doi: 10.1111/gcb.12368

    [33]

    BEHNKE G D, ZUBER S M, PITTELKOW C M, et al. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA[J]. Agriculture, Ecosystems & Environment, 2018, 261: 62–70

    [34]

    DOS SANTOS I L, DE OLIVEIRA A D, DE FIGUEIREDO C C, et al. Soil N2O emissions from long-term agroecosystems: interactive effects of rainfall seasonality and crop rotation in the Brazilian Cerrado[J]. Agriculture, Ecosystems & Environment, 2016, 233: 111–120

    [35] 李春喜, 李斯斯, 邵云, 等. 有机物料还田对冬小麦农田土壤温室气体排放影响的研究[J]. 中国生态农业学报(中英文), 2019, 27(6): 815−824

    LI C X, LI S S, SHAO Y, et al. Effects of organic waste application on soil greenhouse gas emissions of a winter wheat field[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 815−824

    [36] 朱晓晴, 安晶, 马玲, 等. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010

    ZHU X Q, AN J, MA L, et al. Effects of different straw returning depths on soil greenhouse gas emission and maize yield[J]. Scientia Agricultura Sinica, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010

    [37] 张广斌, 马静, 徐华, 等. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 2023, 38(3): 504−517

    ZHANG G B, MA J, XU H, et al. Status quo of research and suggestions on reduction of non-CO2 greenhouse gas emission from Chinese farmland[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 504−517

    [38]

    CUI X Q, ZHOU F, CIAIS P, et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation[J]. Nature Food, 2021, 2: 886−893 doi: 10.1038/s43016-021-00384-9

    [39] 张学林, 何堂庆, 张晨曦, 等. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000−2012 doi: 10.3864/j.issn.0578-1752.2022.10.010

    ZHANG X L, HE T Q, ZHANG C X, et al. Effects of arbuscular mycorrhizal fungi on soil N2O emissions during maize growth periods[J]. Scientia Agricultura Sinica, 2022, 55(10): 2000−2012 doi: 10.3864/j.issn.0578-1752.2022.10.010

    [40] 林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报(中英文), 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843

    LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China’s agricultural sector: Current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843

    [41] 李春喜, 刘晴, 邵云, 等. 有机物料还田和减施氮肥对麦-玉周年农田碳氮水足迹及经济效益的影响[J]. 农业资源与环境学报, 2020, 37(4): 527−536

    LI C X, LIU Q, SHAO Y, et al. Effects of organic material returning and nitrogen fertilizer reduction on the economic yields and carbon, nitrogen, and water footprints of wheat-maize annual farmland in China[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 527−536

    [42]

    XU X M, LAN Y. Spatial and temporal patterns of carbon footprints of grain crops in China[J]. Journal of Cleaner Production, 2017, 146: 218−227 doi: 10.1016/j.jclepro.2016.11.181

    [43]

    YAN M, CHENG K, LUO T, et al. Carbon footprint of grain crop production in China–based on farm survey data[J]. Journal of Cleaner Production, 2015, 104: 130−138 doi: 10.1016/j.jclepro.2015.05.058

图(3)  /  表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-08-29
  • 录用日期:  2024-09-05
  • 网络出版日期:  2024-09-05
  • 刊出日期:  2025-03-09

目录

    /

    返回文章
    返回