Agricultural water price policy reform and water saving technology adoption tendencies from the perspective of farmers’ differentiation: Based on a survey in Hebei Province
-
摘要: 作为农业水资源管理机制的重要创新, 农业水价政策改革旨在从需求侧管理角度出发引导农民进行灌溉行为的调整。本文以河北农业水价改革地区为研究对象, 实证检验了水价政策改革对节水技术采用的影响, 并基于技术属性和禀赋差异探讨了农户分化在技术采用中的倾向差异。研究发现: 1) “超用加价”模式的水价政策改革显著促进了节水技术的使用; 2)农户分化导致了节水技术选择中存在倾向差异, 低兼业农户倾向于使用抗旱品种和传统节水技术, 高兼业农户倾向于仅使用抗旱品种, 水价改革并未有效促进农户使用喷灌、滴灌等现代节水设施; 3)提升农民对节水技术有效性认知和水资源稀缺预期, 降低农民对节水技术使用的风险性感知可有效促进农户使用节水技术, 家庭非农就业程度对节水技术采用具有显著负向影响。未来应进一步推进水价政策改革试点, 同时需关注节水技术属性特点进行针对性推广。Abstract: Agricultural water price policy reform is an important innovation in agricultural water resource management that aims to guide farmers in adjusting their irrigation behavior in response to demand-side management. In this study, we considered the agricultural water price reform in Hebei Province as the research topic and use empirical tests to assess the influence of water price policy reform on farmer adoption of water-saving technology. Herein, we discussed the differences in farmer perspectives regarding the adoption of water-saving technology based on technical attributes and variation in farmers endowment. The results indicated that: 1) the “raising price for exceeding amount” water price policy reform mode altered the relative economy of water-saving technology usage and promoted the use of water-saving technologies. 2) Farmer differentiation led to differences in water-saving technology selection; more specifically, low part-time farmers (proportion of non-agricultural income < 50%) preferred to use drought-resistant varieties and traditional water-saving technologies, whereas high part-time farmers (proportion of non-agricultural income > 50%) preferred to use drought-resistant varieties only. Additionally, the water price policy reform did not effectively promote the use of sprinkler and drip irrigation of farmers. 3) Improving farmer awareness of the effectiveness of water-saving technology and the reality of water scarcity forecasts, as well as reducing the risk perception of farmers to the use of water-saving technology, effectively benefited the adoption of water-saving technology. Finally, the degree of non-agricultural employment was found to have a significant negative impact on the local use of water-saving technology. Based on these results, we suggested the following implications for policy: 1) the continuation of vigorous agricultural water price policy reform promotion and the improvement of the reform system and mechanism design; 2) the strengthening of water-saving technology advocation and ensuring the appropriate promotion of technical attribute characteristics;. 3) focusing on differences in the endowments of farmers and striving to alleviate endowment constraints; 4) increasing publicity efforts aiming to enhance farmer awareness of water-saving technologies and water regimes, as well as helping farmers establish the appropriate water-saving awareness and water use concepts. This study provides empirical support for the practical effects of water price policy reform. Additionally, it is subdivided according to the attribute differences of various water-saving technology elements and describes farmers irrigation adaptation behavior in detail.
-
表 1 不同节水技术属性与农户选择
Table 1 Attribute and selection of different water-saving technologies
节水技术种类
Type of water-saving technology不确定性
Uncertainty劳动投入
Labor input资本投入
Capital input选择该技术农户类型
Farmers type choosing this technology抗旱品种
Drought-resistant varieties增加
Increase不变
Unchanged不变
Unchanged高兼业户、低兼业户
High level part-time farmers, low level part-time farmers传统节水技术
Traditional water-saving technology不变
Unchanged增加
Increase增加
Increase低兼业户
Low level part-time farmers现代节水设施
Modern water-saving facilities增加
Increase减少
Reduce增加
Increase高兼业户
High level part-time farmers表 2 模型关键变量定义及统计结果
Table 2 Definition and statistics of key variables of model
变量名称
Variable name变量定义
Definition均值
Mean value节水技术采用
Water saving-technology adoption0=否; 1=是
0=no; 1=yes0.41 水价政策改革
Reform of agricultural water price policy0=否; 1=是
0=no; 1=yes0.18 性别 Gender 0=女; 1=男 0=female; 1=male 0.92 年龄 Age 54.51 受教育程度
Education level1=文盲; 2=小学; 3=初中; 4=高中或中专; 5=大专及以上
1=illiteracy; 2=primary school; 3=junior middle school; 4=high school or technical secondary school; 5=college or higher2.66 务农年限
Farming years从事农业生产的时间
Time engaged in agricultural production (a)32.18 户口类型
Account type0=农业户口; 1=非农业户口
0=agricultural account; 1=non-agricultural account0.99 兼业程度 Concurrent business degree 家庭非农收入比例 Proportion of non-agricultural income 0.61 家庭务农劳动力数量
Number of farming labors家庭中从事务农的劳动力人数
Number of farming labor of household2.31 家庭经济水平
Economic level of household1=较低; 2=中等偏下; 3=中等; 4=中等偏上; 5=较好
1=low; 2=below average; 3=medium level; 4=above average; 5=high2.33 家庭经营规模 Planting scale hm2 0.89 土地块数
Number of cultivated land该作物耕地细分块数
Number of subdivided plots of cultivated land3.85 节水技术有效性认知
Cognition on the effectiveness of water-saving technology1=完全不认同; 2=不太认同; 3=一般; 4=比较认同; 5=完全认同
1=totally disagree; 2=not so agree; 3=general agree; 4=quite agree; 5=totally agree3.12 节水技术风险感知
Risk cognition of water-saving technology1=完全不认同; 2=不太认同; 3=一般; 4=比较认同; 5=完全认同
1=totally disagree; 2=not so agree; 3=general agree; 4=quite agree; 5=totally agree3.81 稀缺预期
Scarcity expectation1=完全不认同; 2=不太认同; 3=一般; 4=比较认同; 5=完全认同
1=totally disagree; 2=not so agree; 3=general agree; 4=quite agree; 5=totally agree4.42 水资源短缺状况
Water shortage status1=非常充足; 2=比较充足; 3=刚好够用; 4=有些紧张; 5=严重缺乏
1=sufficient; 2=relatively sufficient; 3=just enough; 4=relatively shortage; 5=serious shortage3.69 作物类型 Crop type 1=玉米; 2=小麦; 3=棉花 1=corn; 2=wheat; 3=cotton 1.76 流转土地 Transfer land 0=自有土地; 1=流转土地 0=self-owned land; 1=land transferred 0.87 土质类型 Soil type 1=沙土; 2=壤土; 3=黏土 1=sand; 2=loam; 3=clay 2.22 表 3 水价政策改革对节水技术采用回归结果
Table 3 Regression results of reform of water price policy on water-saving technology adoption
变量 Variable (1) (2) (3) (4) (5) (6) 水价政策改革 0.416*** 0.369*** 0.409*** 0.302*** 0.297*** 0.276*** Reform of water price policy (0.034) (0.037) (0.028) (0.021) (0.018) (0.020) 性别 −0.003 −0.005 0.002 0.002 Gender (0.006) (0.006) (0.005) (0.005) 年龄 −0.012 −0.036 −0.038 −0.027 Age (0.037) (0.037) (0.028) (0.029) 文化程度 0.072* 0.082** 0.069** 0.068** Education level (0.037) (0.03) (0.031) (0.032) 从事农业年限 0.013 0.001 0.002 0.002 Farming years (0.015) (0.016) (0.013) (0.011) 户口类型 0.034 0.055 0.026 0.048 Account type (0.069) (0.073) (0.058) (0.060) 兼业程度 −0.021* −0.017* −0.016* Concurrent business degree (0.011) (0.009) (0.009) 家庭务农劳动力人数 0.104 0.039 0.021 Number of farming labors (0.134) (0.087) (0.076) 家庭经济水平 0.022 0.028* 0.026 Economic level of household (0.018) (0.016) (0.016) 家庭经营规模 0.017* 0.022 0.018 Planting scale (0.009) (0.014) (0.012) 节水技术有效性认知 0.020** 0.021** Cognition on the effectiveness of water-saving technology (0.090) (0.010) 节水技术风险感知 −0.133*** −0.118*** Risk cognition of water-saving technology (0.026) (0.035) 水资源稀缺预期 0.301** 0.208** Scarcity expectation (0.130) (0.090) 水资源短缺状况 0.016* Water shortage status (0.009) 作物类型(参照组: 玉米)
Crop type (control group: maize)小麦 0.213*** Wheat (0.049) 棉花 0.069** Cotton (0.032) 土地产权 −0.001 Transfer land (0.002) 土质类型 0.003 Soil type (0.005) 地区虚拟变量
Regional dummy variable未控制
Uncontrolled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled时间虚拟变量
Time dummy variable已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled常数项
Constant0.351*** 0.349*** 0.444* 0.542*** 0.533*** 0.648*** (0.0187) (0.133) (0.231) (0.0169) (0.112) (0.149) R2 0.174 0.181 0.204 0.086 0.103 0.133 观测值 Observations 1365 1365 1365 1365 1365 1365 ***: P<0.01; **: P<0.05; *: P<0.1。括号内数值为回归结果的标准误。***, ** and * mean significant correlation at P<0.01, P<0.05, P<0.1 levels, respectively. The values in brackets are the standard error of regression results. 表 4 节水技术选择的农户分化异质性回归结果
Table 4 Regression results of differentiation heterogeneity of farmers on water-saving technolgy adopation
变量
Variable低兼业组 Low level part-time farmers 高兼业组 High level part-time farmers 抗旱品种
Drought-resistant varieties传统节水技术
Traditional water-saving technology现代节水设施
Modern water- saving facilities抗旱品种
Drought-resistant varieties传统节水技术
Traditional water-saving technology现代节水设施
Modern water- saving facilities水价政策改革
Reform of agricultural water price policy0.389***
(0.060)0.586***
(0.041)0.050
(0.041)0.231***
(0.051)0.345
(0.324)0.033
(0.046)控制变量
Control variable已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled地区虚拟变量
Regional dummy variable已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled时间虚拟变量
Time dummy variable已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled已控制
Controlled常数项
Constant0.636* 0.543** 0.091*** 0.217*** 0.168*** 0.126*** (0.371) (0.252) (0.010) (0.041) (0.023) (0.013) 观测数 Observation 371 371 371 547 547 547 R2 0.143 0.339 0.362 0.202 0.467 0.149 ***: P<0.01; **: P<0.05; *: P<0.1。括号内数值为回归结果的标准误。***, ** and * mean significant correlation at P<0.01, P<0.05, P<0.1 levels, respectively. The values in brackets are the standard error of regression results. 表 5 按照兼业分组的节水技术选择回归结果
Table 5 Regression results of water saving technology selection grouped by concurrent
节水技术
Water saving technology兼业类型
Type of part-time水价政策改革
Reform of water price policy控制变量
Controlled variable地区虚拟变量
Regional dummy variable时间虚拟变量
Time dummy variable观测数
ObservationsR2 抗旱品种
Drought-resistant
varieties纯务农
Pure farmers0.474*** (0.101) Controlled Controlled Controlled 98 0.144 一兼
First part-time farmers0.352*** (0.078) Controlled Controlled Controlled 273 0.371 二兼
Second part-time farmers0.323*** (0.082) Controlled Controlled Controlled 426 0.613 非农户
Non-farmers0.132** (0.061) Controlled Controlled Controlled 121 0.08 传统节水技术
Traditional water
saving technology纯务农
Pure farmers0.666*** (0.125) Controlled Controlled Controlled 98 0.269 一兼
First part-time farmers0.499*** (0.181) Controlled Controlled Controlled 273 0.622 二兼
Second part-time farmers0.576* (0.322) Controlled Controlled Controlled 426 0.456 非农户
Non-farmers0.215 (0.711) Controlled Controlled Controlled 121 0.199 现代节水设施
Modern water
saving facilities纯务农
Pure farmers0.034 (0.461) Controlled Controlled Controlled 98 0.565 一兼
First part-time farmers0.912* (0.521) Controlled Controlled Controlled 273 0.418 二兼
Second part-time farmers0.034 (0.222) Controlled Controlled Controlled 426 0.814 非农户
Non-farmers0.015 (0.172) Controlled Controlled Controlled 121 0.215 ***: P<0.01; **: P<0.05; *: P<0.1。括号内数值为回归结果的标准误。***, ** and * mean significant correlation at P<0.01, P<0.05 and P<0.1 levels, respectively. The values in brackets are the standard error of regression results. -
[1] 康绍忠. 水安全与粮食安全[J]. 中国生态农业学报, 2014, 22(8): 880−885 KANG S Z. Towards water and food security in China[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880−885
[2] 贺志武, 雷云, 陆迁. 技术不确定性、社会网络对农户节水灌溉技术采用的影响−以甘肃省张掖市为例[J]. 干旱区资源与环境, 2018, 32(5): 59−63 HE Z W, LEI Y, LU Q. The influences of technological uncertainty and social network on the adoption of water-saving irrigation technology for rural households[J]. Journal of Arid Land Resources and Environment, 2018, 32(5): 59−63
[3] FOSTER A D, ROSENZWEIG M R. Microeconomics of technology adoption[J]. Annual Review of Economics, 2010, 2(1): 395−424 doi: 10.1146/annurev.economics.102308.124433
[4] 张华, 王礼力. 农业水贫困对农户节水灌溉技术采用决策的影响[J]. 干旱区资源与环境, 2020, 34(12): 105−109 ZHANG H, WANG L L. Impact of agricultural water poverty on the decision-making of farmers’ water saving irrigation technology adoption[J]. Journal of Arid Land Resources and Environment, 2020, 34(12): 105−109
[5] 伊热鼓, 姜文来. 农业水价效应研究进展[J]. 中国农业资源与区划, 2017, 38(8): 224−229 doi: 10.7621/cjarrp.1005-9121.20170835 YI R G, JIANG W L. Research progress on the effect of agricultural water price[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 224−229 doi: 10.7621/cjarrp.1005-9121.20170835
[6] 易福金, 肖蓉, 王金霞. 计量水价、定额管理还是按亩收费? ——海河流域农业用水政策探究[J]. 中国农村观察, 2019(1): 33–50 YI F J, XIAO R, WANG J X. Water price, quota or irrigated area tax? An examination of agricultural water policies in Haihe river basin[J]. China Rural Survey, 2019(1): 33–50
[7] WANG J X, ZHANG L J, HUANG J K. How could we realize a win-win strategy on irrigation price policy? Evaluation of a pilot reform project in Hebei Province, China[J]. Journal of Hydrology, 2016, 539: 379−391 doi: 10.1016/j.jhydrol.2016.05.036
[8] 刘静, 陆秋臻, 罗良国. “一提一补”水价改革节水效果研究[J]. 农业技术经济, 2018(4): 126–135 LIU J, LU Q Z, LUO L G. The effect of “collect then refund” water-pricing mechanism on irrigation water consumption[J]. Journal of Agrotechnical Economics, 2018(4): 126–135
[9] 胡振通, 王亚华. 地下水超采综合治理的农户评价、原因分析与改进建议[J]. 中国人口·资源与环境, 2018, 28(10): 160−168 HU Z T, WANG Y H. Farmers’ evaluation, cause analysis and improvement suggestions on groundwater over-exploited comprehensive governance[J]. China Population, Resources and Environment, 2018, 28(10): 160−168
[10] 姜翔程, 解小爽, 孙杰. 农业水价综合改革的利益相关者分析[J]. 水利经济, 2020, 38(1): 49−53 doi: 10.3880/j.issn.1003-9511.2020.01.008 JIANG X C, XIE X S, SUN J. Stakeholder analysis of comprehensive reform of agricultural water price[J]. Journal of Economics of Water Resources, 2020, 38(1): 49−53 doi: 10.3880/j.issn.1003-9511.2020.01.008
[11] GHADIM A K A, PANNELL D J, BURTON M P. Risk, uncertainty, and learning in adoption of a crop innovation[J]. Agricultural Economics, 2005, 33(1): 1−9 doi: 10.1111/j.1574-0862.2005.00433.x
[12] ABEBAW D, HAILE M G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia[J]. Food Policy, 2013, 38: 82−91 doi: 10.1016/j.foodpol.2012.10.003
[13] 文长存, 汪必旺, 吴敬学. 农户采用不同属性“两型农业”技术的影响因素分析−基于辽宁省农户问卷的调查[J]. 农业现代化研究, 2016, 37(4): 701−708 WEN C C, WANG B W, WU J X. Factors affecting the adoption of different technologies by “the Two-Oriented Agriculture”: a case study of grain farmers in Liaoning, China[J]. Research of Agricultural Modernization, 2016, 37(4): 701−708
[14] 唐博文, 罗小锋, 秦军. 农户采用不同属性技术的影响因素分析——基于9省(区)2110户农户的调查[J]. 中国农村经济, 2010(6): 49–57 TANG B W, LUO X F, QIN J. Analysis of factors influencing farmers using different technologies survey based on 2110 farmers of 9 provinces [J]. Chinese Rural Economy, 2010(6): 49–57
[15] 郑旭媛, 王芳, 应瑞瑶. 农户禀赋约束、技术属性与农业技术选择偏向——基于不完全要素市场条件下的农户技术采用分析框架[J]. 中国农村经济, 2018(3): 105–122 ZHENG X Y, WANG F, YING R Y. Endowment constraints, technical attributes and agricultural technology selection bias of farmers: An analysis framework of farmers’ technology adoption based on incomplete factor market [J]. Chinese Rural Economy, 2018(3): 105–122
[16] KABUNGA N S, DUBOIS T, QAIM M. Yield effects of tissue culture bananas in Kenya: accounting for selection bias and the role of complementary inputs[J]. Journal of Agricultural Economics, 2012, 63(2): 444−464 doi: 10.1111/j.1477-9552.2012.00337.x
[17] 佟大建, 黄武, 应瑞瑶. 基层公共农技推广对农户技术采纳的影响——以水稻科技示范为例[J]. 中国农村观察, 2018(4): 59–73 TONG D J, HUANG W, YING R Y. The impacts of grassroots public agricultural technology extension on farmers’ technology adoption: an empirical analysis of rice technology demonstration [J]. China Rural Survey, 2018(4): 59–73
[18] 黄腾, 赵佳佳, 魏娟, 等. 节水灌溉技术认知、采用强度与收入效应−基于甘肃省微观农户数据的实证分析[J]. 资源科学, 2018, 40(2): 347−358 HUANG T, ZHAO J J, WEI J, et al. Cognition of irrigation water-saving techniques, adoption intensity and income effects in Gansu, China[J]. Resources Science, 2018, 40(2): 347−358
[19] 郭格, 陆迁. 基于TAM的内在感知对影响农户不同节水灌溉技术采用的研究−以甘肃张掖市为例[J]. 中国农业资源与区划, 2018, 39(7): 129−136 GUO G, LU Q. The effect of tam-based inner perception on farmers’ different water-saving irrigation techniques adoption — a case study in Zhangye, Gansu[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(7): 129−136
计量
- 文章访问数: 1058
- HTML全文浏览量: 231
- PDF下载量: 47