高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选

董宏图, 解超杰, 侯佩臣, 李爱学, 王晓冬

董宏图, 解超杰, 侯佩臣, 李爱学, 王晓冬. 高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选[J]. 中国生态农业学报(中英文), 2021, 29(4): 762-770. DOI: 10.13930/j.cnki.cjea.200664
引用本文: 董宏图, 解超杰, 侯佩臣, 李爱学, 王晓冬. 高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选[J]. 中国生态农业学报(中英文), 2021, 29(4): 762-770. DOI: 10.13930/j.cnki.cjea.200664
DONG Hongtu, XIE Chaojie, HOU Peichen, LI Aixue, WANG Xiaodong. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 762-770. DOI: 10.13930/j.cnki.cjea.200664
Citation: DONG Hongtu, XIE Chaojie, HOU Peichen, LI Aixue, WANG Xiaodong. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 762-770. DOI: 10.13930/j.cnki.cjea.200664
董宏图, 解超杰, 侯佩臣, 李爱学, 王晓冬. 高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选[J]. 中国生态农业学报(中英文), 2021, 29(4): 762-770. CSTR: 32371.14.j.cnki.cjea.200664
引用本文: 董宏图, 解超杰, 侯佩臣, 李爱学, 王晓冬. 高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选[J]. 中国生态农业学报(中英文), 2021, 29(4): 762-770. CSTR: 32371.14.j.cnki.cjea.200664
DONG Hongtu, XIE Chaojie, HOU Peichen, LI Aixue, WANG Xiaodong. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 762-770. CSTR: 32371.14.j.cnki.cjea.200664
Citation: DONG Hongtu, XIE Chaojie, HOU Peichen, LI Aixue, WANG Xiaodong. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 762-770. CSTR: 32371.14.j.cnki.cjea.200664

高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选

基金项目: 

广东省重点领域研发计划项目 2019B020219003

国家自然科学基金 32001410

详细信息
    作者简介:

    董宏图, 主要研究方向为植物离子吸收与养分利用。E-mail: donght@nercita.org.cn

    通讯作者:

    王晓冬, 主要研究方向为植物生理信号检测。E-mail: wangxd@nercita.org.cn

  • 中图分类号: S529

Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress

Funds: 

the Key-Area Research and Development Program of Guangdong Province 2019B020219003

the National Natural Science Fundation of China 32001410

More Information
  • 摘要: 耐盐能力评价是小麦引种、筛选和育种的研究基础。为利用离子流检测技术快速筛选耐盐小麦品种提供依据,本文以普通小麦耐盐品种‘德抗961’和‘薛早’、中度耐盐材料3D232、盐敏感品种‘辽春10号’和‘京411’为试验材料,利用动态离子流检测技术对250 mmol·L-1 NaCl胁迫下小麦苗期根部对K+、Na+、Cl-的吸收情况进行检测,并对小麦生长性状及离子浓度变化进行测定,以确立离子吸收与小麦耐盐性的关系。研究结果表明:1)与无盐胁迫(CK)相比,250 mmol·L-1 NaCl胁迫24 h后,盐敏感小麦品种‘辽春10’和‘京411’的K+由内流转变为外流,中等耐盐材料3D232表现出K+外流速度减少,耐盐品种‘德抗961’和‘薛早’则表现出维持K+的内流或K+外流变为内流;Na+均表现为胁迫后外排速度增大,速度值区间由13.86~46.88 pmol·cm-2·s-1变为61~150 pmol·cm-2·s-1;相较Na+,Cl-外排速度升高幅度较大,其中‘辽春10号’外排量变化最大,外排速度是胁迫前的10倍,Na+、Cl-外排速度变化与品种耐盐性无明显相关性。2)高盐胁迫下,盐敏感小麦的根苗比降低,耐盐小麦根苗比升高;盐敏感小麦品种鲜重较CK显著下降,耐盐小麦品种变化不显著。3)盐胁迫条件下,耐盐及中等耐盐小麦品种,根部及地上部K+含量较CK分别增加57%~88%和18%~112%,盐敏感小麦则分别降低40%~44%和24%~42%;耐盐小麦地上部Na+增加倍数小于盐敏感材料,将更多的Na+阻隔在根部,表现出了较好的区隔Na+能力。4)盐胁迫后K+流速与耐盐性评价指标根冠比变化量、鲜重变化率均呈高度的相关,其拟合度分别为0.972和0.832。250 mmol·L-1 NaCl胁迫24 h后小麦根部成熟区K+流速可以作为小麦耐盐性筛选的重要生物标记。
    Abstract: Salt tolerance evaluation is the basis of wheat introduction, screening, and breeding. Salt stress damages plants mainly through osmotic stress, ion toxicity, and other processes. In this study, salt-sensitive varieties 'Liaochun10' and 'Jing411', moderately salt-tolerant breeding material 3D232, and highly salt-tolerant varieties 'DK961' and 'Xuezao' of common wheat were used to analyze ion absorption, growth, and ion concentrations in seedlings under salt concentrations of 0 mmol·L-1 (CK) and 250 mmol·L-1 sodium chloride (NaCl). The ion flux and direction of potassium (K+), sodium (Na+), and chlorine (Cl-) around the roots of five wheat lines with different salt tolerances were measured by applying dynamic ion detection techniques. The relationship between ion flux and wheat salt tolerance was established by studying the mechanism of wheat salt tolerance, which provided a scientific basis for the rapid selection of salt-tolerant varieties using dynamic ion detection technology. The main results were: 1) the detection of dynamic flux demonstrated that the circulation of K+ changed from influx to efflux in the salt-sensitive wheat varieties ('Liaochun10' and 'Jing411') under salt treatment, whereas in the medium salt-tolerant variety (3D232), the efflux of K+ decreased. For the salt-resistant varieties, K+ efflux changed to influx ('Xuezao') or maintained K+ influx ('DK961'). Na+ efflux increased after stress, and the velocity range changed from 23-47 pmol·cm-2·s-1 to 61-150 pmol·cm-2·s-1. Compared with Na+, the Cl- efflux increased, and 'Liaochun10' showed the largest change; the efflux was 10 times higher than that under CK. Na+ and Cl- efflux were not significantly correlated with salt tolerance. 2) Under salt stress, the root-seedling ratio of salt-sensitive wheat decreased, whereas that of salt-tolerant and mid-salt-tolerant wheat increased. The fresh weight of salt-sensitive wheat decreased significantly compared to CK, but the changes in salt-tolerant and mid-salt-tolerant wheat were not significant. 3) After salt stress, the content of K+ in the roots and shoots of salt-tolerant and mid-salt-tolerant wheat increased by 57%-88% and 18%-112%, respectively, whereas in salt-sensitive wheat, it decreased by 40%-44% and 24%-42%, respectively. However, the Na+ increase in the shoots of salt-tolerant wheat was less than that of salt-sensitive wheat, and more Na+ was blocked in the roots. Salt-tolerant wheat was better able to separate Na+. 4) Under salt stress, the K+ flux was highly correlated with changes in the root-seedling ratio and the rate change of fresh weight, with correlation coefficients of 0.972 and 0.832, respectively. In conclusion, under high salt environments, salt-tolerant lines have a stronger ability to protect K+, but K+ can also be protected by regional Na+ application and salt rejection mechanisms to enhance salt tolerance. The results of this study showed that K+ flux in the mature zone of wheat roots can be used as a biomarker for wheat salt tolerance screening after 24 h of 250 mmol·L-1 NaCl stress.
  • 图  1   250 mmol·L-1 NaCl胁迫24 h对不同耐盐性小麦品种幼苗根系K+平均流速的影响

    不同小写字母表示不同品种及两个处理间差异显著(P < 0.05)。

    Figure  1.   Average K+ fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl stress for 24 hours

    Different lowercase letters indicate significant differences among different varieties and NaCl treatments at P < 0.05 level.

    图  2   250 mmol·L-1 NaCl胁迫24 h后不同耐盐性小麦品种幼苗根系K+流速的变化

    A图为对照的K+流速, B图为250 mmol·L-1 NaCl胁迫24 h后的K+流速。每株小麦幼苗持续测定10 min, 每一点均为≥3个重复的平均值。当流速值为负时, 表示根吸收离子, 反之为释放离子。

    Figure  2.   Change of K+ fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl stress for 24 hours

    Fig. A shows the K+ flux of the control, fig. B shows the K+ flux after 250 mmol·L-1 NaCl stress for 24 h. Each seedling is measured for 10 min, and each value is an average of ≥3 replicates. When the flux is negative, it means that the root absorbs ions, and vice versa.

    图  3   250 mmol·L-1 NaCl胁迫24 h对不同耐盐性小麦品种幼苗根系Na+平均流速的影响

    不同小写字母表示不同品种及两个处理间差异显著(P < 0.05)。

    Figure  3.   Average Na+ fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl stress for 24 hours

    Different lowercase letters indicate significant differences among different varieties and NaCl treatments at P < 0.05 level.

    图  4   250 mmol·L-1 NaCl胁迫24 h后不同耐盐性小麦品种幼苗根系Na+流速的变化

    A图为对照的Na+流速, B图为250 mmol·L-1 NaCl胁迫24 h的Na+流速。每株小麦幼苗持续测定10 min, 每一点均为≥3个重复的平均值。当Flux值为负时, 表示根吸收离子, 反之为根释放离子。

    Figure  4.   Change of Na+ fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl for 24 hours

    Fig. A shows the Na+ flux of control; fig. B shows the Na+ flux after 250 mmol·L-1 NaCl stress for 24 h. Each seedling was measured for 10 min, and each value was an average of ≥3 replicates. When the flux is negative, it means that the root absorbs ions and vice versa.

    图  5   250 mmol·L-1 NaCl胁迫24 h对不同耐盐性小麦品种幼苗根系Cl-平均流速的影响

    不同小写字母表示不同品种及两个处理间差异显著(P < 0.05)。

    Figure  5.   Average Cl- fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl stress for 24 hours

    Different lowercase letters indicate significant differences among different varieties and NaCl treatments at P < 0.05 level.

    图  6   250 mmol·L-1 NaCl胁迫24 h后不同耐盐性小麦品种根系Cl-1流速的变化

    A图为对照的Cl-流速, B图为250 mmol·L-1 NaCl胁迫24 h后的Cl-流速。每株小麦幼苗持续测定10 min, 每一点均为≥3个重复的平均值。当Flux值为负时, 表示根吸收离子, 反之为释放离子。

    Figure  6.   Change of Cl- fluxes in seedling roots of wheat varieties with different salt tolerance after 250 mmol·L-1 NaCl stress for 24 hours

    Fig. A shows the Cl- flux of the control, fig. B shows the Cl- flux after 250 mmol·L-1 NaCl stress for 24 h. Each seedling was measured for 10 min, and each point was an average of ≥3 replicates. When the flux is negative, it means that the root absorbs ions and vice versa.

    图  7   250 mmol·L-1 NaCl胁迫24 h对不同耐盐性小麦品种幼苗根苗比和植株鲜重的影响

    不同小写字母表示不同品种及两个处理间差异显著(P < 0.05)。

    Figure  7.   Effects of 250 mmol·L-1 NaCl stress for 24 hours on the root-seedling ratio and fresh weight of wheat varieties with different salt tolerance

    Different lowercase letters indicate significant differences among different varieties and NaCl treatments at P < 0.05 level.

    图  8   250 mmol·L-1 NaCl胁迫24 h对不同耐盐性小麦品种幼苗地上部和根部K+和Na+含量的影响

    不同小写字母表示品种及两个处理间差异显著(P < 0.05)。

    Figure  8.   Effects of 250 mmol·L-1 NaCl stress for 24 hours on contents of K+ and Na+ of seedlings of wheat varieties with different salt tolerance

    Different lowercase letters indicate significant differences among different varieties and NaCl treatments at 0.05 level.

    图  9   NaCl胁迫后小麦幼苗K+流速与根苗比之差(A)和植株鲜重变化量(B)的相关性

    Figure  9.   Correlation between K+ fluxes after NaCl stress and changes in root-seedling ratio (A) and fresh weight (B) of wheat seedlings

  • [1]

    JAFAR M Z, FAROOQ M, CHEEMA M A, et al. Improving the performance of wheat by seed priming under saline conditions[J]. Journal of Agronomy and Crop Science, 2012, 198(1): 38-45 doi: 10.1111/j.1439-037X.2011.00485.x

    [2] 杨帆, 魏晓岑, 张士超, 等. 不同甜高粱品种萌发期抗盐和抗旱性比较[J]. 植物生理学报, 2015, 51(10): 1604-1610 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201510011.htm

    YANG F, WEI X C, ZHANG S C, et al. Comparison on salt and drought resistances of different varieties of Sorghum bicolor at germination stage[J]. Plant Physiology Journal, 2015, 51(10): 1604-1610 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201510011.htm

    [3]

    GUPTA B, HUANG B R. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization[J]. International Journal of Genomics, 2014, 2014: 701596 http://smartsearch.nstl.gov.cn/paper_detail.html?id=fd6a9331acd17b764e6c9e8ba7be4150

    [4]

    GURMANI A R, KHAN S U, MABOOD F, et al. Screening and selection of synthetic hexaploid wheat germplasm for salinity tolerance based on physiological and biochemical characters[J]. International Journal of Agriculture and Biology, 2014, 16(4): 681-690 http://www.cabdirect.org/abstracts/20143245160.html

    [5] 赵俊香, 任翠梅, 吴凤芝, 等. 16份菊芋种质苗期耐盐碱性筛选与综合鉴定[J]. 中国生态农业学报, 2015, 23(5): 620-627 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015512&flag=1

    ZHAO J X, REN C M, WU F Z, et al. Comprehensive identification of saline-alkaline tolerance of 16 Jerusalem artichoke accessions at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 620-627 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015512&flag=1

    [6]

    CUIN T A, BOSE J, STEFANO G, et al. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods[J]. Plant, Cell & Environment, 2011, 34(6): 947-961 http://www.ncbi.nlm.nih.gov/pubmed/21342209

    [7] 李静, 韩庆庆, 段丽婕, 等. 非损伤微测技术在植物生理学研究中的应用及进展[J]. 植物生理学报, 2014, 50(10): 1445-1452 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201410002.htm

    LI J, HAN Q Q, DUAN L J, et al. Applications and advances of non-invasive micro-test technique in plant physiology researches[J]. Plant Physiology Journal, 2014, 50(10): 1445-1452 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201410002.htm

    [8]

    SUN J, ZHANG C L, DENG S R, et al. An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica[J]. Plant, Cell & Environment, 2012, 35(5): 893-916 doi: 10.1111/j.1365-3040.2011.02461.x

    [9] 马荣, 王成, 马庆, 等. 向日葵芽苗期离子对复合盐胁迫的响应[J]. 中国生态农业学报, 2017, 25(5): 720-729 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170510&flag=1

    MA R, WANG C, MA Q, et al. Ion response of sunflower at sprouting stage to mixed salt stress[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 720-729 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170510&flag=1

    [10]

    MA D M, XU W R, LI H W, et al. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb. )[J]. Protoplasma, 2014, 251(1): 219-231 doi: 10.1007/s00709-013-0540-9

    [11]

    CHEN Z, NEWMAN I, ZHOU M, et al. Screening plants for salt tolerance by measuring K+ flux: a case study for barley[J]. Plant, Cell & Environment, 2005, 28(10): 1230-1246 http://www.tandfonline.com/servlet/linkout?suffix=CIT0022&dbid=16&doi=10.1080%2F09670262.2015.1070437&key=10.1111%2Fj.1365-3040.2005.01364.x

    [12]

    LU Y J, LI N Y, SUN J, et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiology, 2013, 33(1): 81-95 doi: 10.1093/treephys/tps119

    [13] 王宝山, 赵可夫. 小麦叶片中Na、K提取方法的比较[J]. 植物生理学通讯, 1995, 31(1): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL199501019.htm

    WANG B S, ZHAO K F. Comparison of extractive methods of Na and K in theat leaves[J]. Plant Physiology Communications, 1995, 31(1): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL199501019.htm

    [14] 付长方, 张海艳. 盐胁迫对玉米种子萌发、幼苗叶绿素含量和渗透势的影响[J]. 山东农业科学, 2015, 47(5): 27-30 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201505007.htm

    FU C F, ZHANG H Y. Effects of salt stress on seed germination and seedling chlorophyll content and osmotic potential of maize[J]. Shandong Agricultural Sciences, 2015, 47(5): 27-30 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201505007.htm

    [15] 李焕勇, 唐晓倩, 杨秀艳, 等. NaCl处理对西伯利亚白刺幼苗中矿质元素含量的影响[J]. 植物生理学报, 2017, 53(12): 2125-2136 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201712008.htm

    LI H Y, TANG X Q, YANG X Y, et al. Effects of Na Cl stress on mineral element contents in Nitraria sibirica seedlings[J]. Plant Physiology Journal, 2017, 53(12): 2125-2136 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201712008.htm

    [16]

    SHABALA S, SHABALA L. Ion transport and osmotic adjustment in plants and bacteria[J]. Biomolecular Concepts, 2011, 2(5): 407-419 doi: 10.1515/BMC.2011.032

    [17]

    CUIN T A, BETTS S A, CHALMANDRIER R, et al. A root's ability to retain K+ correlates with salt tolerance in wheat[J]. Journal of Experimental Botany, 2008, 59(10): 2697-2706 doi: 10.1093/jxb/ern128

    [18]

    WHITE P J, TESTER M A. Potassium channels from the plasma membrane of rye roots characterized following in halophyte Puccinellia tenuiflora under salt stress[J]. Acta physiologiae plantarum, 2015, 37(5): 100-110 doi: 10.1007/s11738-015-1846-3

    [19]

    GUPTA B, HUANG B R. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization[J]. International Journal of Genomics, 2014, 2014: 701596 http://smartsearch.nstl.gov.cn/paper_detail.html?id=fd6a9331acd17b764e6c9e8ba7be4150

    [20]

    ZHU J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology, 2000, 124(3): 941-948 doi: 10.1104/pp.124.3.941

    [21]

    ZHU J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5): 441-445 http://mplant.oxfordjournals.org/external-ref?access_num=12972044&link_type=MED

    [22]

    SATHEE L, SAIRAM R K, CHINNUSAMY V, et al. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat[J]. Acta Physiologiae Plantarum, 2015, 37(8): 1-10 doi: 10.1007/s11738-015-1910-z

    [23] 李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报, 2019, 35(7): 148-155 https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201907021.htm

    LI X Y, XIE L N. Research progress in Na+ regulation mechanism of plants under salt stress[J]. Biotechnology Bulletin, 2019, 35(7): 148-155 https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201907021.htm

    [24]

    YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2): 523-539 http://www.ncbi.nlm.nih.gov/pubmed/29205383

图(9)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  178
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 录用日期:  2020-09-22
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回