Effects of intercropping sweet potato in banana plantation on functional diversity of soil microorganisms
-
摘要: 为探究香蕉与红薯间作模式下土壤微生物群落功能多样性的变化特征, 以及土壤微生物对土壤养分转化和碳源利用特征, 本研究以‘桂蕉1号’为材料, 采用Biolog方法和主成分分析对香蕉单作与香蕉和红薯间作下土壤微生物功能多样性的变化进行了比较分析。结果表明, 在营养生长期至抽蕾结实期, 蕉园间作红薯具有极显著提高土壤微生物代谢活性的作用(P<0.01), 与单作相比, 间作土壤微生物群落的吸光值平均颜色变化率(AWCD)提高0.77~14.36倍, 土壤微生物群落多样性、优势度和丰富度分别提高0.09~1.01倍、0.02~0.31倍和0.52~5.04倍, 但间作和单作蕉园土壤微生物群落均匀度差异不显著。此外, 蕉园间作红薯增加了土壤微生物利用碳源种类和代谢活性, 间作土壤微生物对碳水化合物类、氨基酸类、羧酸类、多聚类、酚酸类和胺类的代谢活性比单作提高13.81倍、9.22倍、5.38倍、9.93倍、6.08倍和3.46倍; 蕉园间作红薯和香蕉单作土壤微生物对不同碳源的利用效率有较大的差异, 间作土壤微生物以碳水化合物类和氨基酸类为主要代谢碳源, 利用率为20.29%~25.25%和18.58%~20.31%, 单作则以多聚类化合物和酚酸类为主要代谢碳源, 利用率为0.60%~52.71%和13.94%~26.56%; 间作土壤微生物群落利用的碳源化合物数量比单作增加9~28种, 且间作和单作的差异达到极显著(P<0.01)或显著水平(P<0.05), 间作的土壤微生物主要利用的碳源为D-甘露醇和N-乙酰-D-葡萄糖胺等, 单作主要利用吐温80和L-精氨酸等。主成分分析表明, 碳水化合物类和氨基酸类是促使蕉园间作红薯土壤微生物多样性发生改变的主要碳源。在蕉园间作红薯具有提高土壤微生物群落多样性和增加土壤微生物群落碳源利用种类与活性的作用, 起到明显改善土壤微生物群落功能多样性的效应。Abstract: Reasonable intercropping patterns of crops have positive regulatory effects on the metabolic functional diversity of soil microbial communities. To explore the functional diversity of the soil microbial community and the characteristics of soil microbial transformation in soil nutrients and carbon source utilization in intercropping of banana and sweet potato, the changes in soil microbial functional diversity under banana monoculture and banana-sweet potato intercropping in ‘Guijiao No. 1’ banana plantation were compared and analyzed by using the Biolog method and principal component analysis. The results showed that the soil microbial metabolic activity from the vegetative growth stage to the budding stage of banana could be significantly improved by intercropping sweet potato in a banana plantation (P<0.01). The average color change rate of the intercropping soil microbial community was increased by 0.77–14.36 times, and the diversity, dominance, and richness of the soil microbial community increased by 0.09–1.01, 0.02–0.31, and 0.52–5.04 times, respectively, compared with those of the single cropping. However, there was no significant difference in soil microbial community evenness between intercropping and monoculture in the banana orchards. In addition, the carbon source utilization and metabolic activity of soil microorganisms increased in banana plantations intercropped with sweet potato. The metabolic activities of soil microorganisms for carbohydrates, amino acids, carboxylic acids, polymers, phenolic acids, and amines in intercropping were 13.81, 9.22, 5.38, 9.93, 6.08, and 3.46 times higher than those in the monoculture, respectively. There were differences in the utilization efficiency of different carbon sources between monoculture and intercropping systems. Carbohydrates and amino acids were the main metabolic carbon sources for soil microorganisms in intercropping, and polymer compounds and phenolic acids were the main metabolic carbon sources in the monoculture. The number of carbon sources utilized by soil microbial communities in intercropping was increased by 9–28 times compared with that of the monoculture, and the difference between intercropping and monoculture reached a very significant or significant level (P<0.01 or P<0.05, respectively). For banana intercropping with sweet potato, the utilization rate of carbohydrates by soil microorganisms was the highest, reaching 20.29%–25.25%, followed by amino acids with a utilization rate of 18.58%–20.31%, whereas the utilization rate of carboxylic acids, multi-cluster compounds, phenolic acids, and amines was lower than 18.28%. For banana monoculture, the utilization rate of multi-cluster compounds by soil microorganisms was the highest, reaching 0.60%–52.71%, followed by phenolic acids with the utilization rate of 13.94%–26.56%, whereas the utilization rate of the other four carbon sources was lower than 17.82%. There were notable differences in the utilization efficiency of single carbon sources by soil microorganisms between banana intercropping with sweet potato and banana monoculture. The main carbon sources used by intercropping soil microorganisms were d-cellobiose, N-acetyl-d-glucosamine, d-mannitol, α-d-lactose, d-galacturonic acid, d-xylose, l-arginine, and l-asparagine, accounting for 24.53%–31.12% of the total carbon sources. The carbon sources utilized by monoculture microorganisms included Tween-80, L-arginine, N-acetyl-d-glucosamine, L-asparagine, γ-hydroxybutyric acid, and α-d-lactose, accounting for 32.02%–78.45% of the total carbon source. Principal component analysis showed that carbohydrates and amino acids were the main carbon sources that changed the soil microbial diversity of banana intercropping with sweet potato. The diversity of rhizosphere soil microbial communities in banana plantations could be improved, and the carbon sources utilization efficiency and activity of the soil microbial community were improved by intercropping sweet potato; thus, the functional diversity of the rhizosphere microbial community was significantly improved.
-
表 1 蕉园间作红薯对土壤微生物利用6类碳源吸光值的影响
Table 1 Effects of intercropping sweet potato in banana plantation on the absorbance value of six carbon sources used by soil microorganisms
月份
Month处理
Treatment碳水化合物类
Carbohydrates氨基酸类
Amino acids羧酸类
Carboxylic acids多聚类
Polymers酚酸类
Phenolic acids胺类
Amines5 IC 1.74±0.14Aa 1.46±0.32Aa 1.18±0.23Aa 1.41±0.34 Aa 1.11±0.30Aa 0.84±0.10Aa MC 0.05±0.07Bb 0.06±0.06Bb 0.17±0.28Bb 0.23±0.20Bb 0.06±0.05Bb 0.00±0.00Bb 7 IC 1.51±0.02Aa 1.23±0.19Aa 0.98±0.13Aa 1.04±0.24Aa 0.27±0.16Aa 0.99±0.43Aa MC 0.17±0.04Bb 0.20±0.24Bb 0.09±0.08Bb 0.04±0.06Bb 0.19±0.26Aa 0.13±0.11Bb 9 IC 1.17±0.02Aa 1.08±0.19Aa 0.87±0.02Aa 0.97±0.23Aa 0.84±0.07Aa 0.85±0.10Aa MC 0.54±0.08Bb 0.65±0.05Ab 0.51±0.05Bb 0.74±0.13Aa 0.55±0.20Aa 0.59±0.13Aa IC和MC分别表示与红薯间作和单作蕉园。不同小写字母和大写字母表示同一月份两处理间分别在P<0.05和P<0.01水平差异显著。IC and MC represent intercropping with sweet potato and monoculture of banana, respectively. Different lowercase letters and uppercase letters indicate significant differences between two treatments in the same month at P<0.05 and P<0.01, respectively. 表 2 蕉园间作红薯对土壤微生物6类碳源利用率的影响
Table 2 Effects of intercropping sweet potato in banana plantation on the utilization rates of six carbon sources by soil microorganisms
% 月份
Month处理
Treatment碳水化合物类
Carbohydrates氨基酸类
Amino acids羧酸类
Carboxylic acids多聚类
Polymers酚酸类
Phenolic acids胺类
Amines5 IC 22.55±2.73Aa 18.68±2.75Aa 15.28±3.03Aa 18.28±4.14Ab 14.20±2.98Aa 11.00±1.97Aa MC 1.79±0.66Bb 3.95±0.45Bb 27.14±33.45Aa 52.71±26.42Aa 13.94±7.98Aa 0.48±0.17Bb 7 IC 25.25±2.34Aa 20.31±1.77Aa 16.45±3.12Aa 17.21±3.50Aa 4.52±2.81Ab 16.26±6.15Aa MC 16.94±0.35Ab 26.02±22.73Aa 11.97±5.15Aa 0.60±0.39Bb 26.56±26.52Aa 17.93±2.10Aa 9 IC 20.29±0.29Aa 18.58±3.26Aa 15.09±0.24Aa 16.78±4.01Aa 14.59±1.32Aa 14.67±1.86Aa MC 15.14±1.87Bb 18.20±1.43Aa 14.37±1.51Aa 20.69±4.14Aa 15.22±5.42Aa 16.39±2.96Aa IC和MC分别表示与红薯间作和单作蕉园。不同小写字母和大写字母表示同一月份两处理间分别在P<0.05和P<0.01水平差异显著。IC and MC represent intercropping with sweet potato and monoculture of banana, respectively. Different lowercase letters and uppercase letters indicate significant differences between two treatments in the same month at P<0.05 and P<0.01, respectively. 表 3 蕉园间作红薯对土壤微生物群落多样性指数的影响
Table 3 Effect of intercropping sweet potato in banana plantation on soil microbial community diversity indexes
月份
Month处理
Treatment多样性指数
Shannon index (Hʹ)均匀度指数
Evenness index (E)优势度指数
Simpson index (D)丰富度指数
McIntosh index (U)5 IC 3.33±0.02Aa 0.98±0.01Aa 0.96±0.00Aa 8.79±0.63Aa MC 1.66±0.12Bb 1.67±0.48Aa 0.74±0.05Bb 1.45±0.74Bb 7 IC 3.16±0.03Aa 0.98±0.02Aa 0.95±0.00Aa 8.00±0.21Aa MC 1.75±0.10Bb 1.21±0.28Aa 0.76±0.04Bb 2.13±0.71Bb 9 IC 3.24±0.02Aa 0.98±0.02Aa 0.96±0.00Aa 6.66±0.16Aa MC 2.97±0.01Bb 1.00±0.01Aa 0.94±0.00Bb 4.37±0.26Bb IC和MC分别表示与红薯间作和单作蕉园。不同小写字母和大写字母表示同一月份两处理间分别在P<0.05和P<0.01水平差异显著。IC and MC represent intercropping with sweet potato and monoculture of banana, respectively. Different lowercase letters and uppercase letters indicate significant differences between two treatments in the same month at P<0.05 and P<0.01, respectively. 表 4 蕉园单作和间作红薯的土壤微生物碳源利用特征的主成分得分系数
Table 4 Principal components score coefficients of carbon source utilization of soil microorganisms in banana plantations monoculturing and intercropping with sweet potato
月份 Month 处理 Treatment PC1 PC2 5 IC 5.87Aa 0.88Aa MC −5.32Bb −0.19Aa 7 IC 3.55Aa −0.22Aa MC −4.84Bb −0.81Aa 9 IC 2.29Aa 0.40Aa MC −1.55Bb −0.05Aa IC和MC分别表示与红薯间作和单作蕉园。不同小写字母和大写字母表示同一月份两处理间分别在P<0.05、P<0.01水平差异显著。IC and MC represent intercropping with sweet potato and monoculture of banana, respectively. Different lowercase letters and uppercase letters indicate significant differences between two treatments in the same month at P<0.05 and P<0.01, respectively. 表 5 31种碳源在蕉园土壤微生物碳源利用特征的第1主成分(PC1)和第2主成分(PC2)上的初始载荷因子
Table 5 Initial load factors of 31 carbon sources on the first principal component (PC1) and the second principal component (PC2) of carbon source utilization of soil microorganisms in banana plantations
编号 Plate number 碳源类型 Carbon source type PC1 PC2 A3 碳水化合物类 Carbohydrates D-半乳糖酸γ-内酯 D-Galactonic Acid γ-Lactone 0.879 — A2 β-甲基-D-葡萄糖苷 β-Methyl-D-Glucoside 0.937 — G1 D-纤维二糖 D-Cellobiose 0.954 — H1 α-D-乳糖 α-D-Lactose 0.692 0.533 C2 i-赤藓糖醇 i-Erythritol 0.600 — G2 α-D-葡萄糖-1-磷酸 α-D-Glucose-1-Phosphate 0.934 — B2 D-木糖 D-Xylose 0.798 — D2 D-甘露醇 D-Mannitol 0.875 — E2 N-乙酰-D-葡萄糖胺 N-Acetyl-D-Glucosamine 0.887 — H2 D,L-α-磷酸甘油 D,L-α-Glycerol Phosphate 0.923 — B3 D-半乳糖醛酸 D-Galacturonic Acid 0.942 — F2 D-葡萄糖胺酸 D-Glucosaminic Acid — — B4 氨基酸类 Amino acids L-天门冬酰胺 L-Asparagine 0.832 — C4 L-苯基丙氨酸 L-Phenylalanine 0.751 — A4 L-精氨酸 L-Arginine 0.907 — D4 L-丝氨酸 L-Serine 0.966 — E4 L-苏氨酸 L-Threonine 0.749 — F4 甘氨酸-L-谷氨酸 Glycyl-L-Glutamic Acid 0.859 — E3 羧酸类
Carboxylic acidsγ-羟丁酸 γ-Hydroxybutyric Acid 0.896 — F3 衣康酸 Itaconic Acid 0.881 — G3 α-丁酮酸 α-Ketobutyric Acid 0.690 — H3 D-苹果酸 D-Malic Acid 0.666 — B1 丙酮酸甲酯 Pyruvic Acid Methyl Ester 0.680 — E1 多聚类
Polymersα-环式糊精 α-Cyclodextrin 0.662 0.571 F1 肝糖 Glycogen — −0.538 C1 吐温40 Tween40 0.864 — D1 吐温80 Tween 80 0.746 — C3 酚酸类
Phenolic acids2-羟基苯甲酸 2-Hydroxy Benzoic Acid 0.635 — D3 4-羟基苯甲酸 4-Hydroxy Benzoic Acid 0.655 — G4 胺类
Amines苯乙胺 Phenylethylamine 0.909 — H4 腐胺 Putrescine 0.680 −0.631 -
[1] PANKHURST C E, OPHEL-KELLER K, DOUBE B M, et al. Biodiversity of soil microbial communities in agricultural systems[J]. Biodiversity & Conservation, 1996, 5(2): 197−209
[2] SCHLOTER M, DILLY O, MUNCH J C. Indicators for evaluating soil quality[J]. Agriculture, Ecosystems & Environment, 2003, 98(1/2/3): 255−262
[3] 李明智, 张宇, 梅荣武, 等. Biolog ECO分析活性污泥微生物功能多样性特征[J]. 环境科学与技术, 2016, 39(6): 55−58, 100 LI M Z, ZHANG Y, MEI R W, et al. Analysis of microbial community functional diversity of activated sludge by biolog ECO method[J]. Environmental Science & Technology, 2016, 39(6): 55−58, 100
[4] 时鹏, 高强, 王淑平, 等. 玉米连作及其施肥对土壤微生物群落功能多样性的影响[J]. 生态学报, 2010, 30(22): 6173−6182 SHI P, GAO Q, WANG S P, et al. Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity[J]. Acta Ecologica Sinica, 2010, 30(22): 6173−6182
[5] 王文鹏, 毛如志, 陈建斌, 等. 种植方式对玉米不同生长期土壤微生物群落功能多样性的影响[J]. 中国生态农业学报, 2015, 23(10): 1293−1301 WANG W P, MAO R Z, CHEN J B, et al. Analysis of functional diversity of soil microbial communities under different cultivation patterns at different growth stages of maize[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1293−1301
[6] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016 LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity[J]. Acta Pedologica Sinica, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016
[7] 许建晶, 罗珠珠, 陈英. 坡耕地土壤微生物功能多样性对间作体系的响应[J]. 草业科学, 2019, 36(2): 314−323 XU J J, LUO Z Z, CHEN Y. Response of soil microbial functional diversity to an intercropping system on slope land in the Loess Plateau[J]. Pratacultural Science, 2019, 36(2): 314−323
[8] 韦锦坚, 覃潇敏, 农玉琴, 等. 茶与大豆间作对土壤微生物群落代谢功能多样性的影响[J]. 华北农学报, 2021, 36(S1): 289−296 WEI J J, QIN X M, NONG Y Q, et al. Effects of tea and soybean intercropping on metabolic functional diversity of soil microbial community[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 289−296
[9] 郑亚强, 杜广祖, 李亦菲, 等. 间作甘蔗对玉米根际微生物功能多样性的影响[J]. 生态学杂志, 2018, 37(7): 2013−2019 ZHENG Y Q, DU G Z, LI Y F, et al. Effects of intercropping sugarcane on functional diversity of maize rhizosphere microorganisms[J]. Chinese Journal of Ecology, 2018, 37(7): 2013−2019
[10] 姬艳艳, 张贵龙, 张瑞, 等. 耕作方式对农田土壤微生物功能多样性的影响[J]. 中国农学通报, 2013, 29(6): 117−123 doi: 10.3969/j.issn.1000-6850.2013.06.022 JI Y Y, ZHANG G L, ZHANG R, et al. Effects of different tillage modes on metabolic functional diversity of soil microbial community[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 117−123 doi: 10.3969/j.issn.1000-6850.2013.06.022
[11] 赵国建, 鲍金勇, 杨公明. 香蕉营养保健价值及综合利用[J]. 食品研究与开发, 2005, 26(6): 175−178 doi: 10.3969/j.issn.1005-6521.2005.06.055 ZHAO G J, BAO J Y, YANG G M. Hygienic nutrition function of banana and its utilization[J]. Food Research and Development, 2005, 26(6): 175−178 doi: 10.3969/j.issn.1005-6521.2005.06.055
[12] 吴瀚翔, 陈志彬, 肖春霞, 等. 咯菌腈羧酸衍生物内吸传导性及对香蕉枯萎病的防效测定[J]. 植物保护学报, 2021, 48(4): 789−797 WU H X, CHEN Z B, XIAO C X, et al. Systemicity of fludioxonil derivatives with a carboxylic acid function and their control effect against fusarium wilt of banana[J]. Journal of Plant Protection, 2021, 48(4): 789−797
[13] 李华平, 李云锋, 聂燕芳. 香蕉枯萎病的发生及防控研究现状[J]. 华南农业大学学报, 2019, 40(5): 128−136 doi: 10.7671/j.issn.1001-411X.201905062 LI H P, LI Y F, NIE Y F. Research status of occurrence and control of fusarium wilt of banana[J]. Journal of South China Agricultural University, 2019, 40(5): 128−136 doi: 10.7671/j.issn.1001-411X.201905062
[14] 黄素梅, 韦莉萍, 李朝生, 等. 5个抗枯萎病香蕉品种(系)在广西蕉区的引种表现[J]. 西南农业学报, 2020, 33(11): 2530−2536 HUANG S M, WEI L P, LI C S, et al. Performance of five introduced banana varieties (lines) resistant to fusarium wilt disease in Guangxi[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2530−2536
[15] 蔡国俊, 郭春艳, 谭仲廷, 等. 百香果连作对土壤细菌群落结构的影响[J]. 热带作物学报, 2021, 42(12): 3655−3663 CAI G J, GUO C Y, TAN Z T, et al. Effects of continuous cropping of passiflora edulis on soil bacterial community structure[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3655−3663
[16] 马琨, 张丽, 杜茜, 等. 马铃薯连作栽培对土壤微生物群落的影响[J]. 水土保持学报, 2010, 24(4): 229−233 MA K, ZHANG L, DU Q, et al. Effect of potato continuous cropping on soil microorganism community structure and function[J]. Journal of Soil and Water Conservation, 2010, 24(4): 229−233
[17] 柳影, 丁文娟, 曹群, 等. 套种韭菜配施生物有机肥对香蕉枯萎病及土壤微生物的影响[J]. 农业环境科学学报, 2015, 34(2): 303−309 doi: 10.11654/jaes.2015.02.014 LIU Y, DING W J, CAO Q, et al. Effects of Allium tuberosum interplanting and bio-organic fertilizer application on banana wilt disease and soil microorganisms[J]. Journal of Agro-Environment Science, 2015, 34(2): 303−309 doi: 10.11654/jaes.2015.02.014
[18] 吴宇佳, 杨春, 雷菲, 等. 套种花生对香蕉园小气候和土壤理化性质的影响[J]. 福建农业学报, 2020, 35(3): 337−343 WU Y J, YANG C, LEI F, et al. Effects of intercropping peanut on soil properties and microclimate at banana orchards[J]. Fujian Journal of Agricultural Sciences, 2020, 35(3): 337−343
[19] 匡石滋, 张金妹, 田世尧, 等. 香蕉与大豆间作效应研究[J]. 广东农业科学, 2011, 38(7): 63−65 doi: 10.3969/j.issn.1004-874X.2011.07.022 KUANG S Z, ZHANG J M, TIAN S Y, et al. Study of effects of banana-soybean intercropping[J]. Guangdong Agricultural Sciences, 2011, 38(7): 63−65 doi: 10.3969/j.issn.1004-874X.2011.07.022
[20] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351−2359 doi: 10.1128/aem.57.8.2351-2359.1991
[21] 李小容, 韦金玉, 陈云, 等. 海南岛不同林龄的木麻黄林地土壤微生物的功能多样性[J]. 植物生态学报, 2014, 38(6): 608−618 doi: 10.3724/SP.J.1258.2014.00056 LI X R, WEI J Y, CHEN Y, et al. Functional diversity of soil microorganisms in Casuarina equisetifolia woodlands of different stand ages in Hainan Island[J]. Chinese Journal of Plant Ecology, 2014, 38(6): 608−618 doi: 10.3724/SP.J.1258.2014.00056
[22] 张红, 吕家珑, 曹莹菲, 等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, 51(4): 743−752 doi: 10.11766/trxb201311010504 ZHANG H, LYU J L, CAO Y F, et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4): 743−752 doi: 10.11766/trxb201311010504
[23] 孔滨, 杨秀娟. Biolog生态板的应用原理及碳源构成[J]. 绿色科技, 2011(7): 231–234 KONG B, YANG X J. Application principle and carbon source composition of biolog ecological board [J]. Journal of Green Science and Technology, 2011(7): 231–234
[24] 邓文悦. 长期施肥对江西稻田土壤有机质与土壤微生物功能多样性的影响[D]. 西安: 西北大学, 2017: 31–32 DENG W Y. Effects of long-term fertilization on soil organic matter and soil microbial functional diversity in Jiangxi paddy soil[D]. Xi’an: Northwest University, 2017: 31–32
[25] 唐艳芬, 续勇波, 郑毅, 等. 小麦蚕豆间作对根际土壤氮转化微生物的影响[J]. 农业资源与环境学报, 2016, 33(5): 482−490 TANG Y F, XU Y B, ZHENG Y, et al. Effects of wheat and faba bean intercropping on microorganism involved in nitrogen transformation in the rhizosphere soils[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 482−490
[26] HE Y, DING N, SHI J C, et al. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils[J]. Soil Biology and Biochemistry, 2013, 57: 625−634 doi: 10.1016/j.soilbio.2012.07.027
[27] 唐宏亮, 郭秋换, 张春潮, 等. 磷供应对玉米根际微生物碳源利用和功能多样性的影响[J]. 中国生态农业学报, 2015, 23(10): 1312−1319 TANG H L, GUO Q H, ZHANG C C, et al. Effects of phosphorus supply on microbial carbon source utilization and functional diversity of maize rhizosphere[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1312−1319
[28] 田春杰, 陈家宽, 钟扬. 微生物系统发育多样性及其保护生物学意义[J]. 应用生态学报, 2003, 14(4): 609−612 doi: 10.3321/j.issn:1001-9332.2003.04.030 TIAN C J, CHEN J K, ZHONG Y. Phylogenetic diversity of microbes and its perspectives in conservation biology[J]. Chinese Journal of Applied Ecology, 2003, 14(4): 609−612 doi: 10.3321/j.issn:1001-9332.2003.04.030
[29] 刘敏, 张广宇, 张永北, 等. 竹荪间作对橡胶园土壤微生物区系与群落功能多样性的影响[J]. 江苏农业科学, 2018, 46(13): 295−298 LIU M, ZHANG G Y, ZHANG Y B, et al. Influences of intercropping of Dictyophora indusiata on soil microbial flora and community functional diversity in rubber plantation[J]. Jiangsu Agricultural Sciences, 2018, 46(13): 295−298
[30] 徐强, 刘艳君, 陶鸿. 间套作玉米对线辣椒根际土壤微生物生态特征的影响[J]. 中国生态农业学报, 2013, 21(9): 1078−1087 doi: 10.3724/SP.J.1011.2013.01078 XU Q, LIU Y J, TAO H. Effects of relay intercropping maize on rhizosphere soil microbial ecological characteristics in capsicum fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1078−1087 doi: 10.3724/SP.J.1011.2013.01078
[31] 刘亚军, 马琨, 李越, 等. 马铃薯间作栽培对土壤微生物群落结构与功能的影响[J]. 核农学报, 2018, 32(6): 1186−1194 doi: 10.11869/j.issn.100-8551.2018.06.1186 LIU Y J, MA K, LI Y, et al. Effect of different intercropping cultivation patterns of potato on the structure and function of soil microorganism community[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(6): 1186−1194 doi: 10.11869/j.issn.100-8551.2018.06.1186
[32] 邵颖, 刘长海. 土壤微生物与植被、温度及水分关系的研究进展[J]. 延安大学学报: 自然科学版, 2017, 36(4): 43−48 SHAO Y, LIU C H. Research progress on the relationship between soil microorganism and vegetation, temperature and moisture[J]. Journal of Yan’an University: Natural Science Edition, 2017, 36(4): 43−48
[33] 李鑫, 张会慧, 岳冰冰, 等. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响[J]. 应用生态学报, 2012, 23(7): 1825−1831 LI X, ZHANG H H, YUE B B, et al. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825−1831
[34] 徐华勤, 肖润林, 宋同清, 等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2): 166−174 doi: 10.3321/j.issn:1005-0094.2008.02.009 XU H Q, XIAO R L, SONG T Q, et al. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodiversity Science, 2008, 16(2): 166−174 doi: 10.3321/j.issn:1005-0094.2008.02.009
[35] 马玲, 马琨, 汤梦洁, 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响[J]. 生态环境学报, 2013, 22(8): 1341−1347 doi: 10.3969/j.issn.1674-5906.2013.08.011 MA L, MA K, TANG M J, et al. Effects of intecropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil[J]. Ecology and Environmental Sciences, 2013, 22(8): 1341−1347 doi: 10.3969/j.issn.1674-5906.2013.08.011
[36] 张萌萌, 敖红, 李鑫, 等. 桑树/苜蓿间作对根际土壤酶活性和微生物群落多样性的影响[J]. 草地学报, 2015, 23(2): 302−309 ZHANG M M, AO H, LI X, et al. Effects of intercropping between mulberry and alfalfa on soil enzyme activities and microbial community diversity in rhizophere[J]. Acta Agrestia Sinica, 2015, 23(2): 302−309
[37] 郑亚强, 张立敏, 杨进成, 等. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响[J]. 中国生态农业学报, 2016, 24(5): 618−627 ZHENG Y Q, ZHANG L M, YANG J C, et al. Effects of sugarcane and maize intercropping on sugarcane rhizosphere microbe metabolic function diversity[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 618−627
[38] 苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6): 96−99 YUAN Y R, HAN X Z, LI L J, et al. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. Journal of Soil and Water Conservation, 2011, 25(6): 96−99
[39] DONG L L, XU J, FENG G Q, et al. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J]. Scientific Reports, 2016, 6: 31802 doi: 10.1038/srep31802
[40] 覃潇敏, 郑毅, 汤利, 等. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报, 2015, 41(6): 919−928 doi: 10.3724/SP.J.1006.2015.00919 QIN X M, ZHENG Y, TANG L, et al. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity[J]. Acta Agronomica Sinica, 2015, 41(6): 919−928 doi: 10.3724/SP.J.1006.2015.00919
[41] 张承, 王秋萍, 周开拓, 等. 猕猴桃园套种吉祥草对土壤酶活性及果实产量、品质的影响[J]. 中国农业科学, 2018, 51(8): 1556−1567 doi: 10.3864/j.issn.0578-1752.2018.08.013 ZHANG C, WANG Q P, ZHOU K T, et al. Effects of intercropping Reineckia carnea on soil enzyme activity and kiwifruit fruit yield, quality in kiwifruit orchard[J]. Scientia Agricultura Sinica, 2018, 51(8): 1556−1567 doi: 10.3864/j.issn.0578-1752.2018.08.013
[42] 黄玉茜, 韩晓日, 杨劲峰, 等. 花生根系分泌物对土壤微生物学特性及群落功能多样性的影响[J]. 沈阳农业大学学报, 2015, 46(1): 48−54 doi: 10.3969/j.issn.1000-1700.2015.01.009 HUANG Y Q, HAN X R, YANG J F, et al. Effect of peanut root exudates on soil microbial characteristics and community functional diversity[J]. Journal of Shenyang Agricultural University, 2015, 46(1): 48−54 doi: 10.3969/j.issn.1000-1700.2015.01.009
[43] 唐海明, 肖小平, 李超, 等. 冬季覆盖作物秸秆还田对双季稻田根际土壤微生物群落功能多样性的影响[J]. 生态学报, 2018, 38(18): 6559−6569 TANG H M, XIAO X P, LI C, et al. Effects of recycling straw of different winter covering crops on rhizospheric microbial community functional diversity in a double-cropped paddy field[J]. Acta Ecologica Sinica, 2018, 38(18): 6559−6569
[44] 杨智仙, 汤利, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 570−579 doi: 10.11674/zwyf.2014.0307 YANG Z X, TANG L, ZHENG Y, et al. Effects of different wheat cultivars intercropped with faba bean on faba bean fusarium wilt, root exudates and rhizosphere microbial community functional diversity[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 570−579 doi: 10.11674/zwyf.2014.0307
[45] 周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征[J]. 应用生态学报, 2018, 29(3): 909−914 ZHOU Q, WANG L C, XING Y, et al. Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 909−914
[46] LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture[J]. The New Phytologist, 2014, 203(1): 63−69 doi: 10.1111/nph.12778
[47] LI C X, TIAN Q, RAHMAN M K U, et al. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon[J]. Plant and Soil, 2020, 456(1/2): 223−240
[48] REN L X, HUO H W, ZHANG F, et al. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense[J]. Plant Signaling & Behavior, 2016, 11(6): e1187357
[49] 苏世鸣, 任丽轩, 霍振华, 等. 西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J]. 中国农业科学, 2008, 41(3): 704−712 doi: 10.3864/j.issn.0578-1752.2008.03.010 SU S M, REN L X, HUO Z H, et al. Effects of intercropping watermelon with rain fed rice on fusarium wilt and the microflora in the rhizosphere soil[J]. Scientia Agricultura Sinica, 2008, 41(3): 704−712 doi: 10.3864/j.issn.0578-1752.2008.03.010
[50] ZHOU X G, YU G B, WU F Z. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield[J]. European Journal of Soil Biology, 2011, 47(5): 279−287 doi: 10.1016/j.ejsobi.2011.07.001