稻渔系统碳固持与甲烷排放特征

戴然欣, 赵璐峰, 唐建军, 章涛杰, 郭梁, 罗崎月, 胡中元, 胡亮亮, 陈欣

戴然欣, 赵璐峰, 唐建军, 章涛杰, 郭梁, 罗崎月, 胡中元, 胡亮亮, 陈欣. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报 (中英文), 2022, 30(4): 616−629. DOI: 10.12357/cjea.20210811
引用本文: 戴然欣, 赵璐峰, 唐建军, 章涛杰, 郭梁, 罗崎月, 胡中元, 胡亮亮, 陈欣. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报 (中英文), 2022, 30(4): 616−629. DOI: 10.12357/cjea.20210811
DAI R X, ZHAO L F, TANG J J, ZHANG T J, GUO L, LUO Q Y, HU Z Y, HU L L, CHEN X. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616−629. DOI: 10.12357/cjea.20210811
Citation: DAI R X, ZHAO L F, TANG J J, ZHANG T J, GUO L, LUO Q Y, HU Z Y, HU L L, CHEN X. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616−629. DOI: 10.12357/cjea.20210811

稻渔系统碳固持与甲烷排放特征

基金项目: 国家自然科学基金(U21A20184, 31770481, 31661143001)、浙江省科技重点研发项目(2022C02058, LGN22C030002 )和浙江省“三农六方”项目(2021SNLF002)资助
详细信息
    作者简介:

    戴然欣, 主要从事稻渔系统甲烷排放研究。E-mail: 22007082@zju.edu.cn

    通讯作者:

    陈欣, 主要从事农业生态系统研究。E-mail: chen-tang@zju.edu.cn

  • 中图分类号: X511; S365; S158

Characteristics of carbon sequestration and methane emission in rice-fish system

Funds: The study was supported by the National Natural Science Foundation of China (U21A20184, 31770481, 31661143001), Zhejiang Provincial Key Research and Development Project (2022C02058, LGN22C030002), and Zhejiang Provincial Project of Three Dimensional Rural Issues (2021SNLF002).
More Information
  • 摘要: 稻渔系统(“渔”是水产动物如鱼、蟹、虾、鳖等的统称)是利用稻田浅水环境在种植水稻的同时放养一定数量水产动物的复合稻作体系。稻渔系统中水稻和水产动物相互作用影响着稻田系统碳氮等元素的运转和循环, 对稻田系统碳固持和碳排放是否和如何产生影响也受到关注。基于国内外的研究报道, 本文分析了稻渔系统土壤有机碳和甲烷(CH4)排放特征和影响因素。在土壤有机碳固持方面, 与水稻单作系统相比, 稻渔系统土壤(0~20 cm)有机碳总体呈增加趋势, 主要与水产动物取食与排泄物转化和输入碳有关。在CH4排放方面, 不同研究存在差异, 一些研究表明稻渔系统(如稻蛙、稻虾、稻鱼等模式)的CH4排放显著低于水稻单作系统, 而一些研究则发现稻渔系统(如稻鱼模式) CH4排放显著高于水稻单作系统。稻渔系统CH4排放主要受水产动物类群、水稻品种、稻田环境和种养措施等因素的影响。论文提出未来稻渔系统土壤有机碳固持和CH4排放的研究应聚焦在: 1)长期定位监测研究稻渔系统土壤有机碳库的变化、CH4等气体排放, 通过长期定位观测, 研究稻渔系统有机碳库和CH4排放的动态特征; 2)研究不同水产动物对稻田系统土壤碳库和CH4等气体排放的影响机理; 3)CH4低排放水稻的育种和品种筛选, 比较研究水稻与水产动物群体的配比、饲料和肥料投入比例、稻田水分管理模式、秸秆还田策略等, 构建出适用于稻渔系统的固碳减排技术体系。

     

    Abstract: Rice-fish systems are unique rice farming systems that coculture rice with fish (in this paper, “fish” refers to a wide range of aquatic animals including carp, crayfish, shrimp, crabs, and softshell turtles, and others). Studies have shown that the interactions between rice and fish profoundly change the cycling of C, N, and other elements in paddy ecosystems. Whether and how rice-fish coculture affects C sequestration and methane (CH4) emissions are matters of concern. Based on recently published data, we presented a review of the properties of soil organic C (SOC) and CH4 emissions in rice-fish systems. Compared with that of the rice monoculture system, the SOC content (0–20 cm soil layer) in the rice-fish system tended to increase. An extra C input due to the feeding and excreta transformation of aquatic animals contributed to the increased SOC in the rice-fish system. CH4 emissions from the rice-fish system differed greatly among different studies. Some studies have shown that CH4 emissions from rice-fish systems (e.g., rice-frog, rice-crayfish, and rice-carp) are significantly lower than those of rice monoculture systems, whereas some studies have found that the CH4 emissions of rice-fish systems (such as rice-carp) are significantly higher than those of rice monoculture. These differences in CH4 emissions in the rice-fish system could be caused by the type of fish (e.g., carp, crayfish, shrimp, crabs, and softshell turtles), rice variety, paddy environment, and farming management. To improve our understanding of C sequestration and CH4 emissions in the rice-fish system, more studies and efforts are required. These efforts include i) quantifying the potential of C sequestration and CH4 emissions in rice-fish systems by establishing long-term studies, examining the variation in C sequestration and CH4 emissions among different types of rice-fish systems (e.g., rice-carp, rice-crab, rice-turtle, rice-frog, and rice-crayfish), and outlining the general trends of C sequestration and CH4 emissions in the rice-fish system; ii) understanding the mechanisms by which aquatic animals affect soil C pools and C cycling in paddy ecosystems and examining whether this changed C cycling would affect CH4 emissions; and iii) development of a technology package for culturing rice and fish, including breeding or selecting rice varieties that can adapt well to rice-fish systems and can reduce CH4 emissions, optimizing fertilization rates and fertilization methods for rice, optimizing feeding rates and methods for fish, and optimizing strategies of the straw return rate.

     

  • 图  1   稻渔系统CH4产生与排放过程

    Figure  1.   Production and emission process of CH4 in rice-fish system

    表  1   稻鱼系统对稻田CH4排放的影响

    Table  1   Effect of rice-fish system on CH4 emission in paddy fields

    试验地点
    Site
    试验
    年份
    Year
    土壤质地
    Soil texture
    水产动物 Aquatic livestock水稻品种
    Rice
    variety
    CH4排放量 CH4 emission文献
    来源
    Source
    鱼品种
    Fish species
    密度
    Density
    (individuals·hm−2)
    水稻单作
    Rice
    monoculture
    稻鱼共作
    Rice-fish co-culture
    中国青田
    Qingtian, China
    2012 砂壤土
    Sandy loam
    瓯江彩鲤
    Cyprinus carpio
    4505 中浙优1号
    Zhongzheyou No.1
    31.59 mg·m−2·h−1 23.38 mg·m−2·h−1 [26]
    印度克塔克
    Cuttack, India
    2011 砂质黏土
    Sandy clay loam
    麦瑞加拉鲮鱼
    Cirrhinus mrigala
    8000 Varshadhan 109.3 kg·hm−2 125.6 kg·hm−2 [59]
    印度克塔克
    Cuttack, India
    2011 砂质黏土
    Sandy clay loam
    罗希塔红唇
    Labeo rohita
    8000 Varshadhan 109.3 kg·hm−2 136 kg·hm−2 [59]
    印度克塔克
    Cuttack, India
    2011 砂质黏土
    Sandy clay loam
    普通鲤鱼
    Cyprinus carpio
    8000 Varshadhan 109.3 kg·hm−2 148.5 kg·hm−2 [59]
    印度克塔克
    Cuttack, India
    2011 砂质黏土
    Sandy clay loam
    卡拉鲃
    Catla catla
    8000 Varshadhan 109.3 kg·hm−2 141.5 kg·hm−2 [59]
    中国武汉
    Wuhan, China
    2006 粉质壤土
    Silt loam
    普通鲤鱼
    Cyprinus carpio
    14 285.71 两优培九
    LYP9
    267.1 kg·hm−2 250.1 kg·hm−2 [65]
    印度克塔克
    Cuttack, India
    2005 砂质黏土
    Sandy clay loam
    3种鲤鱼
    Catla catla + Labeo rohita and Cirrhinus mrigala + Puntius gonionotus
    6000 Varshadhan 1.17 mg·m−2·h−1 2.52 mg·m−2·h−1 [60]
    印度克塔克
    Cuttack, India
    2005 砂质黏土
    Sandy clay loam
    3种鲤鱼
    Catla catla + Labeo rohita and Cirrhinus mrigala + Puntius gonionotus
    6000 Durga 1.47 mg·m−2·h−1 2.48 mg·m−2·h−1 [60]
    孟加拉国
    Bangladesh
    2005/
    2006
    黏土
    Clay
    普通鲤鱼+罗非鱼
    Cyprinus carpio +
    Oreochromis niloticus
    10 000 / 20 mg·m−2·h−1 34 mg·m−2·h−1 [61]
    孟加拉国
    Bangladesh
    2005/
    2006
    黏土
    Clay
    普通鲤鱼+罗非鱼
    Cyprinus carpio +
    Oreochromis niloticus
    10 000 / 20 mg·m−2·h−1 37 mg·m−2·h−1 [61]
    孟加拉国
    Bangladesh
    2005/
    2006
    黏土
    Clay
    普通鲤鱼+罗非鱼
    Cyprinus carpio +
    Oreochromis niloticus
    10 000 / 20 mg·m−2·h−1 32 mg·m−2·h−1 [61]
    孟加拉国
    Bangladesh
    2003 壤质黏土
    Loamy clay
    普通鲤鱼
    Cyprinus carpio
    10 000 Cigalon 10.7 mg·m−2·h−1 13.6 mg·m−2·h−1 [62-63]
    孟加拉国
    Bangladesh
    2003 壤质黏土
    Loamy clay
    普通鲤鱼+罗非鱼
    Cyprinus carpio +
    Oreochromis niloticus
    10 000 Cigalon 10.7 mg·m−2·h−1 12.1 mg·m−2·h−1 [62-63]
    中国武汉
    Wuhan, China
    2006 粉质壤土
    Silt loam
    鲫鱼
    Carassius auratus
    15 000 两优培九
    LYP9
    9.82 mg·m−2·h−1 8.61 mg·m−2·h−1 [64]
    中国武汉
    Wuhan, China
    2007 粉质壤土
    Silt loam
    鲫鱼
    Carassius auratus
    15 000 两优培九
    LYP9
    10.39 mg·m−2·h−1 8.51 mg·m−2·h−1 [64]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    鲫鱼(湘云鲫)
    Carassius auratus
    11 994 两优培九
    LYP9
    11.55 mg·m−2·h−1 9.77 mg·m−2·h−1 [66]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    草鱼
    Ctenopharyngodon idella
    8995.5 两优培九
    LYP9
    11.55 mg·m−2·h−1 9.77 mg·m−2·h−1 [67]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    17.12 mg·m−2·h−1 15.79 mg·m−2·h−1 [68]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    13.77 mg·m−2·h−1 10.07 mg·m−2·h−1 [68]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    12.94 mg·m−2·h−1 7.42 mg·m−2·h−1 [68]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    10.63 mg·m−2·h−1 4.51 mg·m−2·h−1 [68]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    10.35 mg·m−2·h−1 4.78 mg·m−2·h−1 [68]
    中国益阳
    Yiyang, China
    2004 黏土
    Clay
    金鱼(墨龙、狮子头)
    Carassius auratus
    14 992.5 两优培九
    LYP9
    4.50 mg·m−2·h−1 2.99 mg·m−2·h−1 [68]
    下载: 导出CSV
  • [1]

    BHATIA A, PATHAK H, JAIN N, et al. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic Plains[J]. Atmospheric Environment, 2005, 39(37): 6976−6984 doi: 10.1016/j.atmosenv.2005.07.052

    [2]

    ZHANG W, YU Y Q, HUANG Y, et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050[J]. Global Change Biology, 2011, 17(12): 3511−3523 doi: 10.1111/j.1365-2486.2011.02495.x

    [3]

    SIMPSON I J, EDWARDS G C, THURTELL G W. Variations in methane and nitrous oxide mixing ratios at the southern boundary of a Canadian boreal forest[J]. Atmospheric Environment, 1999, 33(7): 1141−1150 doi: 10.1016/S1352-2310(98)00235-0

    [4]

    TAMAI N, TAKENAKA C, ISHIZUKA S. Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil[J]. Soil Biology and Biochemistry, 2007, 39(7): 1730−1736 doi: 10.1016/j.soilbio.2007.01.029

    [5]

    AKIYAMA H, YAGI K, YAN X Y. Direct N2O emissions from rice paddy fields: Summary of available data[J]. Global Biogeochemical Cycles, 2005, 19(1), DOI: 10.1029/2004gb002378

    [6]

    YAN X Y, AKIYAMA H, YAGI K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23(2), DOI: 10.1029/2008gb003299

    [7]

    ZOU J W, HUANG Y, QIN Y M, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s[J]. Global Change Biology, 2009, 15(1): 229−242 doi: 10.1111/j.1365-2486.2008.01775.x

    [8]

    ZOU J W, HUANG Y, JIANG J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19(2), DOI: 10.1029/2004gb002401

    [9]

    SUN H F, ZHOU S, FU Z S, et al. A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions[J]. Scientific Reports, 2016, 6: 28255 doi: 10.1038/srep28255

    [10]

    FENG J F, CHEN C Q, ZHANG Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 164: 220−228

    [11]

    VOSS L F, HADAD C M, ALLEN H C. Oxidation of monolayers at the air/water interface: Human impact on tropospheric chemistry and atmospheric oxidant impact on human health[J]. ACS National Meeting Book of Abstracts, 2006, 232: 60

    [12]

    XU G C, LIU X, WANG Q S, et al. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields[J]. Environmental Science and Pollution Research, 2017, 24(7): 6581−6591 doi: 10.1007/s11356-017-8397-7

    [13] 潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报, 2008, 45(5): 901−914 doi: 10.3321/j.issn:0564-3929.2008.05.017

    PAN G X, LI L Q, ZHENG J F, et al. Perspectives on cycling and sequestration of organic carbon in paddy soils of China[J]. Acta Pedologica Sinica, 2008, 45(5): 901−914 doi: 10.3321/j.issn:0564-3929.2008.05.017

    [14] 郑聚锋, 陈硕桐. 土壤有机质与土壤固碳[J]. 科学, 2021, 73(6): 13−17, 4

    ZHENG J F, CHEN S T. Soil organic matter and soil carbon sequestration[J]. Science, 2021, 73(6): 13−17, 4

    [15] 张旭辉, 潘根兴. 稻田与稻作农业对碳中和的启示[J]. 科学, 2021, 73(6): 18−21, 4

    ZHANG X H, PAN G X. Lessons of carbon neutrality from rice paddy and rice farming[J]. Science, 2021, 73(6): 18−21, 4

    [16] 吴金水, 李勇, 童成立, 等. 亚热带水稻土碳循环的生物地球化学特点与长期固碳效应[J]. 农业现代化研究, 2018, 39(6): 895−906

    WU J S, LI Y, TONG C L, et al. The key geo-biochemical processes of the long-term carbon sequestration and its mechanisms in the subtropical paddy soils[J]. Research of Agricultural Modernization, 2018, 39(6): 895−906

    [17]

    WU J S. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29−34 doi: 10.1111/j.1365-2389.2010.01325.x

    [18] 唐建军, 李巍, 吕修涛, 等. 中国稻渔综合种养产业的发展现状与若干思考[J]. 中国稻米, 2020, 26(5): 1−10 doi: 10.3969/j.issn.1006-8082.2020.05.001

    TANG J J, LI W, LYU X T, et al. Development status and rethinking of the integrated rice-fish system in China[J]. China Rice, 2020, 26(5): 1−10 doi: 10.3969/j.issn.1006-8082.2020.05.001

    [19] 吴雪. 稻鱼系统养分循环利用研究[D]. 杭州: 浙江大学, 2012: 37–45

    WU X. The utilization of nutrients in traditional rice-fish co-culture system[D]. Hangzhou: Zhejiang University, 2012: 37–45

    [20] 李成芳, 曹凑贵, 汪金平, 等. 稻鸭、稻鱼共作生态系统中稻田田面水的N素动态变化及淋溶损失[J]. 环境科学学报, 2008, 28(10): 2125−2132 doi: 10.3321/j.issn:0253-2468.2008.10.031

    LI C F, CAO C G, WANG J P, et al. Dynamic variations and losses of N in floodwater of paddy fields in integrated rice-duck and rice-fish ecosystems[J]. Acta Scientiae Circumstantiae, 2008, 28(10): 2125−2132 doi: 10.3321/j.issn:0253-2468.2008.10.031

    [21] 李成芳, 曹凑贵, 汪金平, 等. 稻鸭稻鱼共作生态系统N素平衡的研究[J]. 农业环境科学学报, 2008, 27(4): 1326−1334 doi: 10.3321/j.issn:1672-2043.2008.04.009

    LI C F, CAO C G, WANG J P, et al. Studies on nitrogen cycling in integrated rice-duck, rice-fish ecosystems[J]. Journal of Agro-Environment Science, 2008, 27(4): 1326−1334 doi: 10.3321/j.issn:1672-2043.2008.04.009

    [22] 莫善康, 莫先平. 稻田养鱼的传承发展[J]. 文史春秋, 2020(11): 47−51

    MO S K, MO X P. Inheritance and development of fish farming in paddy fields[J]. Chronical of Literature and History, 2020(11): 47−51

    [23]

    XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. PNAS, 2011, 108(50): E1381−E1387 doi: 10.1073/pnas.1111043108

    [24] 胡亮亮, 唐建军, 张剑, 等. 稻-鱼系统的发展与未来思考[J]. 中国生态农业学报, 2015, 23(3): 268−275

    HU L L, TANG J J, ZHANG J, et al. Development of rice-fish system: Today and tomorrow[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 268−275

    [25] 中国稻渔综合种养产业发展报告(2020)[J]. 中国水产, 2020(10): 12–19

    Report on the development of China’s rice and fishery integrated planting and breeding industry[J]. China Fisheries, 2020(10): 12–19

    [26] 李娜娜. 中国主要稻田种养模式生态分析[D]. 杭州: 浙江大学, 2013: 2–18

    LI N N. Ecological analysis of representative rice-based ecosystems in China[D]. Hangzhou: Zhejiang University, 2013: 2–18

    [27] 丁伟华. 中国稻田水产养殖的潜力和经济效益分析[D]. 杭州: 浙江大学, 2014: 17–19

    DING W H. Potential and economic effects in the integrated rice-aquaculture systems in China[D]. Hangzhou: Zhejiang University, 2014: 17–19

    [28] 胡亮亮. 农业生物种间互惠的生态系统功能[D]. 杭州: 浙江大学, 2014: 35–58

    HU L L. Ecosystem functioning of facilitation between co-cultured species[D]. Hangzhou: Zhejiang University, 2014: 35–58

    [29] 谢坚. 农田物种间相互作用的生态系统功能——以全球重要农业文化遗产“稻鱼系统”为研究范例[D]. 杭州: 浙江大学, 2011: 37–40

    XIE J. Ecosystem functioning of species interactions in farming system — A case study on Globally Important Agricultural Heritage System[D]. Hangzhou: Zhejiang University, 2011: 37–40

    [30] 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245−1253

    CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245−1253

    [31] 房蕊, 于镇华, 李彦生, 等. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3666−3679 doi: 10.3864/j.issn.0578-1752.2021.17.009

    FANG R, YU Z H, LI Y S, et al. Effects of elevated CO2 concentration and warming on soil carbon pools and microbial community composition in farming soil[J]. Scientia Agricultura Sinica, 2021, 54(17): 3666−3679 doi: 10.3864/j.issn.0578-1752.2021.17.009

    [32]

    LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105

    [33] 夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834−841 doi: 10.11654/jaes.2020-0108

    XIA L L, YAN X Y, CAI Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834−841 doi: 10.11654/jaes.2020-0108

    [34] 丁姣龙, 陈璐, 王忍, 等. 鱼排泄物与分泌物对水稻土壤酶活性及土壤养分的影响[J]. 湖南师范大学自然科学学报, 2021, 44(2): 74−79 doi: 10.7612/j.issn.2096-5281.2021.02.010

    DING J L, CHEN L, WANG R, et al. Effects of fish excrement on the soil environment of paddy fields[J]. Journal of Natural Science of Hunan Normal University, 2021, 44(2): 74−79 doi: 10.7612/j.issn.2096-5281.2021.02.010

    [35] 孙刚, 房岩, 韩国军, 等. 稻-鱼复合生态系统对水田土壤理化性状的影响[J]. 中国土壤与肥料, 2009(4): 21−24, 47 doi: 10.3969/j.issn.1673-6257.2009.04.005

    SUN G, FANG Y, HAN G J, et al. Effects of rice-fish integrated ecosystem on physical and chemical properties of paddy soil[J]. Soil and Fertilizer Sciences in China, 2009(4): 21−24, 47 doi: 10.3969/j.issn.1673-6257.2009.04.005

    [36] 李妹娟, 钟旭华, 梁开明, 等. 广东省稻鱼共生生态种养发展现状与对策建议[J]. 广东农业科学, 2021, 48(10): 111−120

    LI M J, ZHONG X H, LIANG K M, et al. Development situation and countermeasures of rice-fish co-culture system in Guangdong Province[J]. Guangdong Agricultural Sciences, 2021, 48(10): 111−120

    [37] 佀国涵, 彭成林, 徐祥玉, 等. 稻–虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤, 2016, 48(3): 503−509

    SI G H, PENG C L, XU X Y, et al. Effects of rice-crayfish integrated mode on soil microbial functional diversity and fertility in waterlogged paddy field[J]. Soils, 2016, 48(3): 503−509

    [38] 安辉, 刘鸣达, 王耀晶, 等. 不同稻蟹生产模式对土壤活性有机碳和酶活性的影响[J]. 生态学报, 2012, 32(15): 4753−4761 doi: 10.5846/stxb201109201383

    AN H, LIU M D, WANG Y J, et al. Effects of different rice-crab production modes on soil labile organic carbon and enzyme activities[J]. Acta Ecologica Sinica, 2012, 32(15): 4753−4761 doi: 10.5846/stxb201109201383

    [39] 陈晓云, 孙文涛, 于凤泉, 等. 稻蟹生态种养模式对稻田土壤肥力及生产效益的影响[J]. 土壤通报, 2021, 52(5): 1165−1172

    CHEN X Y, SUN W T, YU F Q, et al. Effect of rice-crab co-culture system on soil fertility and economic benefits[J]. Chinese Journal of Soil Science, 2021, 52(5): 1165−1172

    [40]

    GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175−179 doi: 10.1016/j.rsci.2020.04.001

    [41] 佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68

    SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68

    [42] 管勤壮, 成永旭, 李聪, 等. 稻虾共作对土壤有机碳的影响及其与土壤性状的关系[J]. 浙江农业学报, 2019, 31(1): 113−120 doi: 10.3969/j.issn.1004-1524.2019.01.15

    GUAN Q Z, CHENG Y X, LI C, et al. Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agriculturae Zhejiangensis, 2019, 31(1): 113−120 doi: 10.3969/j.issn.1004-1524.2019.01.15

    [43]

    WU J S, ZHOU P, LI L, et al. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1031−1037 doi: 10.1002/jsfa.4645

    [44] 陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报(中英文), 2022, 30(2): 175−183

    CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175−183

    [45] 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3−12

    CHEN S W, LIU T Q, CAO C G, et al. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3−12

    [46]

    GUO H S, QI M, HU Z J, et al. Optimization of the rice-fish coculture in Qingtian, China: 1. Effects of rice spacing on the growth of the paddy fish and the chemical composition of both rice and fish[J]. Aquaculture, 2020, 522: 735106 doi: 10.1016/j.aquaculture.2020.735106

    [47]

    LU F. How can straw incorporation management impact on soil carbon storage? A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change, 2015, 20(8): 1545−1568 doi: 10.1007/s11027-014-9564-5

    [48]

    XIA L L, LAM S K, YAN X Y, et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?[J]. Environmental Science & Technology, 2017, 51(13): 7450−7457

    [49]

    ZHAO X, ZHANG R, XUE J F, et al. Management-induced changes to soil organic carbon in China: a meta-analysis[J]. Advances in Agronomy, 2015, 134: 1−50

    [50] 陈斐杰, 夏会娟, 刘福德, 等. 生物质炭特性及其对土壤性质的影响与作用机制[J]. 环境工程技术学报, 2021, https://kns.cnki.net/kcms/detail/11.5972.X.20210624.1004.004.html

    CHEN F J, XIA H J, LIU F D, et al. Characteristics of biochar and its effects on soil and its mechanism[J]. Journal of Environmental Engineering Technology, 2021, https://kns.cnki.net/kcms/detail/11.5972.X.20210624.1004.004.html

    [51] 孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展[J]. 生态环境学报, 2015, 24(4): 716−723

    KONG S F, YAO X C, ZHANG J Y, et al. Review of characteristics of biochar and research progress of its applications[J]. Ecology and Environmental Sciences, 2015, 24(4): 716−723

    [52]

    FANG K K, DAI W, CHEN H Y, et al. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123 doi: 10.1016/j.scitotenv.2021.147123

    [53] 张怡彬, 徐洋, 王洪媛, 等. 稻蟹共生系统温室气体排放特征及其影响因素[J]. 农业资源与环境学报, 2021, https://kns.cnki.net/kcms/detail/12.1437.S.20211116.0858.002.html

    ZHANG Y B, XU Y, WANG H Y, et al. Greenhouse gas emission characteristics and influencing factors of rice–crab symbiosis system[J]. Journal of Agricultural Resources and Environment, 2021, https://kns.cnki.net/kcms/detail/12.1437.S.20211116.0858.002.html

    [54]

    HU Z Q, WU S, JI C, et al. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in Southeast China[J]. Environmental Science and Pollution Research, 2016, 23(2): 1505−1515 doi: 10.1007/s11356-015-5383-9

    [55]

    WANG A, MA X Z, XU J, et al. Methane and nitrous oxide emissions in rice-crab culture systems of Northeast China[J]. Aquaculture and Fisheries, 2019, 4(4): 134−141 doi: 10.1016/j.aaf.2018.12.006

    [56] 徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591−1603

    XU X Y, ZHANG M M, PENG C L, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591−1603

    [57] 孙自川. 稻虾共作下秸秆还田和投食对温室气体排放的影响[D]. 武汉: 华中农业大学, 2018: 34

    SUN Z C. Effects of straw returning and feeding on greenhouse gas emissions in rice-crayfish co-culture ecosystem[D]. Wuhan: Huazhong Agricultural University, 2018: 34

    [58]

    SUN G, SUN M, DU L S, et al. Ecological rice-cropping systems mitigate global warming — A meta-analysis[J]. Science of the Total Environment, 2021, 789: 147900 doi: 10.1016/j.scitotenv.2021.147900

    [59]

    BHATTACHARYYA P, SINHABABU D P, ROY K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system[J]. Agriculture, Ecosystems & Environment, 2013, 176: 53−62

    [60]

    DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1/2/3): 228−237

    [61]

    FREI M, RAZZAK M A, HOSSAIN M M, et al. Methane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh[J]. Agriculture, Ecosystems & Environment, 2007, 120(2/3/4): 391−398

    [62]

    FREI M, BECKER K. Integrated rice-fish production and methane emission under greenhouse conditions[J]. Agriculture, Ecosystems & Environment, 2005, 107(1): 51−56

    [63]

    FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119−128

    [64] 袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052−2060 doi: 10.3864/j.issn.0578-1752.2009.06.022

    YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-fish and rice-duck complex ecosystems and the evaluation of their economic significance[J]. Scientia Agricultura Sinica, 2009, 42(6): 2052−2060 doi: 10.3864/j.issn.0578-1752.2009.06.022

    [65] 展茗, 曹凑贵, 汪金平, 等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报, 2008, 28(11): 5461−5468 doi: 10.3321/j.issn:1000-0933.2008.11.030

    ZHAN M, CAO C G, WANG J P, et al. Greenhouse gases exchange of integrated paddy field and their comprehensive global warming potentials[J]. Acta Ecologica Sinica, 2008, 28(11): 5461−5468 doi: 10.3321/j.issn:1000-0933.2008.11.030

    [66] 刘小燕. 稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究[D]. 长沙: 湖南农业大学, 2004: 29–46

    LIU X Y. Studies on function of mitigating methane emission in paddyfield and imporvement of rice growth environment in rice-duck-fish complex ecosystem[D]. Changsha: Hunan Agricultural University, 2004: 29–46

    [67] 刘小燕, 黄璜, 杨治平, 等. 稻鸭鱼共栖生态系统CH4排放规律研究[J]. 生态环境, 2006, 15(2): 265−269

    LIU X Y, HUANG H, YANG Z P, et al. Methane emission from rice-duck-fish complex ecosystem[J]. Ecology and Environment, 2006, 15(2): 265−269

    [68] 戴振炎. 稻金鱼复合生态系统甲烷排放规律及土壤理化因子的研究[D]. 长沙: 湖南农业大学, 2004: 18–29

    DAI Z Y. Study on fluxes of methane emission and soil physics-chemistry factors in rice-goldfish complex ecosystem[D]. Changsha: Hunan Agricultural University, 2004: 18–29

    [69]

    FANG K K, GAO H, SHA Z M, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China[J]. Agriculture, Ecosystems & Environment, 2021, 308: 107235

    [70]

    LE MER J, ROGER P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37(1): 25−50 doi: 10.1016/S1164-5563(01)01067-6

    [71]

    CONRAD R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1−63

    [72] 王强盛. 稻田种养结合循环农业温室气体排放的调控与机制[J]. 中国生态农业学报, 2018, 26(5): 633−642

    WANG Q S. Regulation and mechanism of greenhouse gas emissions of circular agriculture ecosystem of planting and breeding in paddy[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 633−642

    [73]

    SERRANO-SILVA N, SARRIA-GUZMÁN Y, DENDOOVEN L, et al. Methanogenesis and methanotrophy in soil: a review[J]. Pedosphere, 2014, 24(3): 291−307 doi: 10.1016/S1002-0160(14)60016-3

    [74]

    PENNING H, CONRAD R. Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content[J]. Organic Geochemistry, 2007, 38(12): 2058−2069 doi: 10.1016/j.orggeochem.2007.08.004

    [75]

    THAUER R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture[J]. Microbiology, 1998, 144(9): 2377−2406 doi: 10.1099/00221287-144-9-2377

    [76]

    MALYAN S K, BHATIA A, KUMAR A, et al. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment, 2016, 572: 874−896 doi: 10.1016/j.scitotenv.2016.07.182

    [77]

    MITRA S, MAJUMDAR D, WASSMANN R. Methane production and emission in surface and subsurface rice soils and their blends[J]. Agriculture, Ecosystems & Environment, 2012, 158: 94−102

    [78] 任万辉, 许黎, 王振会. 中国稻田甲烷产生和排放研究 Ⅰ. 产生和排放机理及其影响因子[J]. 气象, 2004, 30(6): 3−7 doi: 10.3969/j.issn.1000-0526.2004.06.001

    REN W H, XU L, WANG Z H. A review on study of methane emission from rice field in China Ⅰ. mechanism and affecting factors[J]. Meteorological Monthly, 2004, 30(6): 3−7 doi: 10.3969/j.issn.1000-0526.2004.06.001

    [79]

    ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543−548 doi: 10.1038/nature08883

    [80]

    NAZARIES L, MURRELL J C, MILLARD P, et al. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions[J]. Environmental Microbiology, 2013, 15(9): 2395−2417 doi: 10.1111/1462-2920.12149

    [81]

    BODELIER P L E, ROSLEV P, HENCKEL T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421−424 doi: 10.1038/35000193

    [82]

    FECHNER E J, HEMOND H F. Methane transport and oxidation in the unsaturated zone of a sphagnum peatland[J]. Global Biogeochemical Cycles, 1992, 6(1): 33−44 doi: 10.1029/91GB02989

    [83]

    TOKIDA T, CHENG W G, ADACHI M, et al. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments[J]. Plant and Soil, 2013, 364(1/2): 131−143

    [84]

    ZHANG G B, YU H Y, FAN X F, et al. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem[J]. Scientific Reports, 2016, 6: 27065 doi: 10.1038/srep27065

    [85]

    STRACK M, WADDINGTON J M. Spatiotemporal variability in peatland subsurface methane dynamics[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2), DOI: 10.1029/2007jg000472

    [86]

    BUTTERBACH-BAHL K, PAPEN H, RENNENBERG H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields[J]. Plant, Cell and Environment, 1997, 20(9): 1175−1183 doi: 10.1046/j.1365-3040.1997.d01-142.x

    [87] 展茗, 曹凑贵, 汪金平, 等. 稻鸭共作对甲烷排放的影响[J]. 应用生态学报, 2008, 19(12): 2666−2672

    ZHAN M, CAO C G, WANG J P, et al. Effects of rice-duck farming on paddy field’s methane emission[J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2666−2672

    [88]

    HIRANO S, MATSUMOTO N, MORITA M, et al. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus[J]. Letters in Applied Microbiology, 2013, 56(5): 315−321 doi: 10.1111/lam.12059

    [89]

    WANG Z P, LINDAU C W, DELAUNE R D, et al. Methane emission and entrapment in flooded rice soils as affected by soil properties[J]. Biology and Fertility of Soils, 1993, 16(3): 163−168 doi: 10.1007/BF00361401

    [90]

    KLUDZE H K, DELAUNE R D, PATRICK W H Jr. Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Science Society of America Journal, 1993, 57(2): 386−391 doi: 10.2136/sssaj1993.03615995005700020017x

    [91]

    CONRAD R. Methane production in soil environments — anaerobic biogeochemistry and microbial life between flooding and desiccation[J]. Microorganisms, 2020, 8(6): 881 doi: 10.3390/microorganisms8060881

    [92]

    WANG C, LAI D Y F, SARDANS J, et al. Factors related with CH4 and N2O emissions from a paddy field: clues for management implications[J]. PLoS One, 2017, 12(1): e0169254 doi: 10.1371/journal.pone.0169254

    [93]

    KIM S Y, VERAART A J, MEIMA-FRANKE M, et al. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments[J]. Geoderma, 2015, 259/260: 354−361 doi: 10.1016/j.geoderma.2015.03.015

    [94]

    YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China, 2009, 8(10): 1246−1255 doi: 10.1016/S1671-2927(08)60335-1

    [95]

    VROMANT N, CHAU N T H. Overall effect of rice biomass and fish on the aquatic ecology of experimental rice plots[J]. Agriculture, Ecosystems & Environment, 2005, 111(1/2/3/4): 153−165

    [96]

    BHARALI A, BARUAH K K, GOGOI N. Potential option for mitigating methane emission from tropical paddy rice through selection of suitable rice varieties[J]. Crop and Pasture Science, 2017, 68(5): 421 doi: 10.1071/CP16228

    [97] 王增远, 徐雨昌, 李震, 等. 水稻品种对稻田甲烷排放的影响[J]. 作物学报, 1999, 25(4): 441−446 doi: 10.3321/j.issn:0496-3490.1999.04.007

    WANG Z Y, XU Y C, LI Z, et al. Effect of rice cultivars on methane emissions from rice field[J]. Acta Agronomica Sinica, 1999, 25(4): 441−446 doi: 10.3321/j.issn:0496-3490.1999.04.007

    [98] 李思宇. 稻田温室气体排放水稻品种间差异及其机理研究[D]. 扬州: 扬州大学, 2020: 15–16

    LI S Y. Greenhouse gas emission from paddy field in different rice cultivars and its possible mechanisms[D]. Yangzhou: Yangzhou University, 2020: 15–16

    [99] 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175−181

    JIANG Y, GUAN D H, ZHANG W J. The effect of rice plant traits on methane emissions from paddy fields: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 175−181

    [100] 沈学良, 田光蕾, 周元昌, 等. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 2020, 10(2): 75−80 doi: 10.11923/j.issn.2095-4050.cjas20190500057

    SHEN X L, TIAN G L, ZHOU Y C, et al. Rice biological characteristics: effects on methane emission from paddy fields[J]. Journal of Agriculture, 2020, 10(2): 75−80 doi: 10.11923/j.issn.2095-4050.cjas20190500057

    [101]

    JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4728−4738 doi: 10.1111/gcb.13737

    [102]

    WATANABE A, TAKEDA T, KIMURA M. Evaluation of origins of CH4 carbon emitted from rice paddies[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D19): 23623−23629 doi: 10.1029/1999JD900467

    [103]

    TOKIDA T, ADACHI M, CHENG W G, et al. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology, 2011, 17(11): 3327−3337 doi: 10.1111/j.1365-2486.2011.02475.x

    [104]

    SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562): 602−606 doi: 10.1038/nature14673

    [105]

    JIANG Y, QIAN H Y, WANG L, et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies[J]. Global Change Biology, 2019, 25(2): 686−698 doi: 10.1111/gcb.14529

    [106]

    SINGH S, SINGH J S, KASHYAP A K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization[J]. Soil Biology and Biochemistry, 1999, 31(9): 1219−1228 doi: 10.1016/S0038-0717(99)00027-9

    [107]

    DAS K, BARUAH K K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2008, 134(2): 303−312 doi: 10.1111/j.1399-3054.2008.01137.x

    [108]

    GOGOI N, BARUAH K K, GUPTA P K. Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable Development, 2008, 28(2): 181−186 doi: 10.1051/agro:2008005

    [109] 曹云英, 许锦彪, 朱庆森. 水稻植株状况对甲烷传输速率的影响及其品种间差异[J]. 华北农学报, 2005, 20(2): 105−109 doi: 10.3321/j.issn:1000-7091.2005.02.027

    CAO Y Y, XU J B, ZHU Q S. Effect of rice plant status and difference rice varietieson methane transport rate[J]. Acta Agriculturae Boreali—Sinica, 2005, 20(2): 105−109 doi: 10.3321/j.issn:1000-7091.2005.02.027

    [110] 温婷, 赵本良, 章家恩. 稻鸭共作中CH4和N2O排放规律及影响因素[J]. 农业环境科学学报, 2020, 39(7): 1442−1450 doi: 10.11654/jaes.2019-1389

    WEN T, ZHAO B L, ZHANG J E. Emission pathways and influencing factors for CH4 and N2O from rice-duck farming[J]. Journal of Agro-Environment Science, 2020, 39(7): 1442−1450 doi: 10.11654/jaes.2019-1389

    [111] 郎有忠, 王美娥, 吕川根, 等. 水稻叶片形态、群体结构和产量对种植密度的响应[J]. 江苏农业学报, 2012, 28(1): 7−11 doi: 10.3969/j.issn.1000-4440.2012.01.002

    LANG Y Z, WANG M E, LYU C G, et al. Response of leaf morphology, population structure and yield to planting density in rice[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(1): 7−11 doi: 10.3969/j.issn.1000-4440.2012.01.002

    [112] 吴敏芳, 张剑, 胡亮亮, 等. 稻鱼系统中再生稻生产关键技术[J]. 中国稻米, 2016, 22(6): 80−82 doi: 10.3969/j.issn.1006-8082.2016.06.017

    WU M F, ZHANG J, HU L L, et al. Practical technology for cultivating ratoon rice in rice-fish system[J]. China Rice, 2016, 22(6): 80−82 doi: 10.3969/j.issn.1006-8082.2016.06.017

    [113]

    CHAPMAN G, FERNANDO C H. The diets and related aspects of feeding of Nile tilapia (Oreochromis niloticus L.) and common carp (Cyprinus carpio L.) in lowland rice fields in northeast Thailand[J]. Aquaculture, 1994, 123(3/4): 281−307

    [114]

    DONG H B, YAO Z S, ZHENG X H, et al. Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime[J]. Atmospheric Environment, 2011, 45(5): 1095−1101 doi: 10.1016/j.atmosenv.2010.11.039

    [115]

    LINQUIST B A, ADVIENTO-BORBE M A, PITTELKOW C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10−21 doi: 10.1016/j.fcr.2012.06.007

    [116]

    CORTON T M, BAJITA J B, GROSPE F S, et al. Methane emission from irrigated and intensively managed rice fields in central Luzon (Philippines)[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 37−53

    [117]

    SINGLA A, INUBUSHI K. Effect of biochar on CH4 and N2O emission from soils vegetated with paddy[J]. Paddy and Water Environment, 2014, 12(1): 239−243 doi: 10.1007/s10333-013-0357-3

    [118]

    HUSSAIN S, PENG S B, FAHAD S, et al. Rice management interventions to mitigate greenhouse gas emissions: a review[J]. Environmental Science and Pollution Research, 2015, 22(5): 3342−3360 doi: 10.1007/s11356-014-3760-4

    [119]

    KOLLAH B, PATRA A K, MOHANTY S R. Aquatic Microphylla azolla: a perspective paradigm for sustainable agriculture, environment and global climate change[J]. Environmental Science and Pollution Research, 2016, 23(5): 4358−4369 doi: 10.1007/s11356-015-5857-9

    [120]

    SINGH J S, STRONG P J. Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation[J]. Ecotoxicology and Environmental Safety, 2016, 124: 267−276 doi: 10.1016/j.ecoenv.2015.10.018

    [121] 刘珂纯, 王旭东, 赵鑫, 等. 稻田甲烷主要减排措施的技术效应与影响因素研究[J]. 吉林农业大学学报, 2021, https://kns.cnki.net/kcms/detail/22.1100.S.20210826.0854.002.html

    LIU K C, WANG X D, ZHAO X, et al. Effects and the influential factors of mian management practices on methane emission in paddy fields[J]. Journal of Jilin Agricultural University, 2021, https://kns.cnki.net/kcms/detail/22.1100.S.20210826.0854.002.html

图(1)  /  表(1)
计量
  • 文章访问数:  1844
  • HTML全文浏览量:  402
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 录用日期:  2021-12-06
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2022-04-10

目录

    /

    返回文章
    返回