外源硫化氢调控盐碱胁迫下裸燕麦叶片糖和酚酸代谢反应

Exogenous hydrogen sulfide modulates metabolic responses of sugar and phenolic acid in naked oat leaves under saline-alkali stress

  • 摘要: 为明确硫化氢信号对盐碱胁迫下植物代谢组的调控作用, 揭示其增强植物耐盐碱性的机理, 以裸燕麦(Avena nuda L.)为材料进行盆栽土培试验, 设置不添加盐碱和添加3.00 g·kg−1盐碱(摩尔比NaCl∶Na2SO4∶Na2CO3∶NaHCO3=12∶8∶1∶9)与裸燕麦抽穗期叶面喷施蒸馏水和50 µmol·L−1硫化氢供体硫氢化钠溶液交叉共4组处理, 利用超高效液相色谱-串联质谱技术结合正交偏最小二乘判别分析方法, 研究外源硫化氢对盐碱胁迫下裸燕麦叶片糖分解代谢产物水平、氧化还原平衡、酚酸含量和产量性状的影响。结果表明: 1)非盐碱条件下, 喷施硫氢化钠对裸燕麦叶片还原型谷胱甘肽/氧化型谷胱甘肽、还原型辅酶Ⅱ/氧化型辅酶Ⅱ、腺苷三磷酸含量和产量性状的影响微弱, 但显著上调柠檬酸、琥珀酸和6-磷酸葡萄糖酯含量, 显著下调葡萄糖-6-磷酸、丙酮酸、乳酸、α-酮戊二酸、谷氨酸、天冬酰胺、赤藓糖-4-磷酸、景天庚酮糖-7-磷酸含量; 盐碱胁迫导致裸燕麦叶片葡萄糖、葡萄糖-6-磷酸、果糖-6-磷酸、果糖-1,6-二磷酸、3-磷酸甘油醛、3-磷酸甘油酸、丙酮酸、乳酸、α-酮戊二酸、谷氨酸、谷氨酰胺、天冬酰胺、赤藓糖-4-磷酸、景天庚酮糖-7-磷酸、核糖-5-磷酸等糖酵解、三羧酸循环和戊糖磷酸途径中间代谢物及还原型谷胱甘肽、氧化型谷胱甘肽、还原型辅酶Ⅱ、氧化型辅酶Ⅱ含量显著降低, 而还原型谷胱甘肽/氧化型谷胱甘肽显著提高; 喷施硫氢化钠显著提高盐碱胁迫下裸燕麦叶片葡萄糖、果糖-6-磷酸、3-磷酸甘油酸、乳酸、α-酮戊二酸、延胡索酸、苹果酸、谷氨酰胺、6-磷酸葡萄糖酯、景天庚酮糖-7-磷酸含量, 显著降低天冬酰胺含量。2)喷施硫氢化钠显著下调非盐碱条件下裸燕麦叶片反式肉桂酸和丁香醛含量; 盐碱胁迫导致裸燕麦叶片反式肉桂酸含量显著降低, 而苯甲酸、对香豆酸和反式阿魏酸含量显著提高; 喷施硫氢化钠显著提高盐碱胁迫下裸燕麦叶片4-羟基苯甲酸和香草醛含量, 显著降低水杨酸、芥子酸含量。3)喷施硫氢化钠对盐碱胁迫造成的裸燕麦穗粒数量和籽粒产量下降具有显著缓解作用, 但对穗数量、穗铃数量、千粒重量和生物学产量的影响不显著。由此表明, 外源硫化氢参与裸燕麦糖分解代谢和酚酸水平调控, 能够增强裸燕麦耐受盐碱胁迫的能力, 它对糖分解途径有机酸水平的提升作用和酚酸独特的调节效应可能在其增强裸燕麦耐盐碱性中发挥着重要作用。

     

    Abstract: In order to clarify the regulatory effect of hydrogen sulfide signaling on the plant metabolome under saline-alkali stress and to reveal its mechanism of enhancing plant saline-alkali tolerance, a pot experiment was conducted with naked oat (Avena nude) as the material. Four treatments were applied to potted naked oat plants in a 2 × 2 factorial combination, including 0 or 3.00 g·kg−1 saline-alkali (molar ratio of NaCl∶Na2SO4∶Na2CO3∶NaHCO3 at 12∶8∶1∶9) added to the potting soil and spraying with distilled water or 50 µmol·L−1 sodium hydrosulfide (a hydrogen sulfide donor) on leaves at the heading stage. The effects of exogenous hydrogen sulfide on glycolytic metabolite levels, redox balance, and phenolic acid content in leaves and on the yield traits of naked oats under the four treatments were investigated using ultra-performance liquid chromatography-tandem mass spectrometry technology combined with orthogonal partial least squares discriminant analysis. Under non-saline-alkali conditions, sodium hydrosulfide application did not have a significant effect on the ratios of (reduced glutathione)/(oxidized glutathione) and (reduced coenzyme Ⅱ)/(oxidized coenzyme Ⅱ), adenosine triphosphate content in leaves, and yield traits of naked oats; however, the levels of citrate, succinate, and 6-phosphogluconolactone were significantly upregulated and those of glucose-6-phosphate, pyruvate, lactate, α-ketoglutaric acid, glutamate, asparagine, erythrose-4-phosphate, and sedoheptulose-7-phosphate were significantly downregulated in the leaves. Saline-alkali stress significantly reduced the levels of glucose, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, 3-phosphate glyceraldehydes, 3-phosphoglyceric acid, pyruvate, lactate, α-ketoglutaric acid, glutamate, glutamine, asparagine, erythrose-4-phosphate, sedoheptulose-7-phosphate, ribose-5-phosphate, reduced glutathione, oxidized glutathione, reduced coenzyme Ⅱ, and oxidized coenzyme Ⅱ in the leaves of naked oats; whereas the ratio of reduced glutathione to oxidized glutathione was increased significantly. Spraying with sodium hydrosulfide significantly increased the levels of glucose, fructose-6-phosphate, 3-phosphoglyceric acid, lactate, α-ketoglutaric acid, fumarate, malate, glutamine, 6-phosphogluconolactone, and sedoheptulose-7-phosphate in the leaves of naked oats under saline-alkali stress, and significantly decreased the asparagine content. The levels of trans-cinnamic acid and syringaldehyde in the leaves of naked oats under non-saline-alkali conditions were significantly decreased by spraying with sodium hydrosulfide. Saline-alkali stress significantly reduced the content of trans-cinnamic acid in the leaves of naked oats, and markedly increased the levels of benzoic acid, p-hydroxycinnamic acid, and trans-ferulic acid. Spraying with sodium hydrosulfide significantly increased the levels of 4-hydroxybenzoic acid and vanillin in the leaves of naked oats under saline-alkali stress, and remarkably decreased the levels of salicylic acid and 4-hydroxy-3,5-dimethoxycinnamic acid.There was no significant increase in spike number, spike boll number, thousand-grain weight, and biological yield of naked oats under saline-alkali stress as a result of spraying with sodium hydrosulfide; however, sodium hydrosulfide significantly alleviated the decrease in spike grain number and grain yield induced by saline-alkali stress. These results indicate that exogenous hydrogen sulfide participates in the regulation of sugar catabolism and phenolic acid levels in naked oats, which can enhance the saline-alkali tolerance of naked oats. The increasing effect of exogenous hydrogen sulfide on organic acid levels in the sugar decomposition pathway and the unique regulatory effect on phenolic acids may play an important role in enhancing the saline-alkali tolerance of naked oats.

     

/

返回文章
返回